Benjamin Eberlei, Qafoo GmbH
October 27, 2016

“ Qaofoo

possion for software quality



Motivation

» Neglecting design leads to underengineering

» Over-focusing on Design-Pattern leads to overengineering

oo
e
© Qafoo
passion for software qualify
Copyright Qafoo GmbH; All Rights Reserved




Refactoring

» small changes to internal code structure

¥ Qofoo

passion for sofftware quality
Copyright Qafoo GmbH; Al




Refactoring

» small changes to internal code structure
» external code structure keeps the old behavior
» Method/Function

oo
e
© Qafoo
passion for software qualify
Copyright Qafoo GmbH; All Rights Reserved




Refactoring

» small changes to internal code structure
» external code structure keeps the old behavior

» Method/Function
» Class

oo
e
© Qafoo
passion for software qualify
Copyright Qafoo GmbH; All Rights Reserved




Refactoring

» small changes to internal code structure
» external code structure keeps the old behavior

» Method/Function
» Class
» System/API

oo
e
© Qafoo
passion for software qualify
Copyright Qafoo GmbH; All Rights Reserved




Refactoring

» small changes to internal code structure
» external code structure keeps the old behavior

» Method/Function
» Class
» System/API

» Tests increase reliability and speed of refactorings

oo
e
© Qafoo
passion for software qualify
Copyright Qafoo GmbH; All Rights Reserved




Refactoring

v

small changes to internal code structure

external code structure keeps the old behavior

» Method/Function
» Class
» System/API

Tests increase reliability and speed of refactorings

v

v

v

No tests are fine: refactorings can be performed very
mechanically/automatically

oo
o
© Qafoo
passion for software qualify
Copyright Qafoo GmbH; All Rights Reserved




Steps

1. Make it work
2. Make it nice

¥ Qofoo

e —
Copyright Qafoo GmbH; All




Goals

v

Simpler to understand, change
Reusable

v

v

Less dependencies
(Unit-) Testable

v

-
© Qafoo
poassion for soffware quality
Copyright Qafoo GmbH; All Rights Reserved




Design Patterns

A software design pattern is a general reusable solution
fo a commonly occurring problem within a given context
in software design. It is not a finished design that can be
transformed directly into source or machine

code. (Wikipedia)

£ Qafoo

passion for software qualify
Copy t Qafoo GmbH; ights Reserved




Refactoring and Patterns

There is a natural relation between patterns and
refactoring. Patterns are where you want to be;
refactorings are ways to get there from somewhere
else. (Martin Fowler, Refactoring p. 107)

oo
e
& Qafoo
passion for software qualify
t Qafoo GmbH; ights Reserved




Refactoring and Patterns

Refactoring towards Patterns to avoid
both under- and overengineering.




Refactoring Basics: Extract Method

> |dentify lines to extract from a method/function
» Create new, empty method without arguments
» Copy lines over to new method

» Find all variables declared outside method, define as
argument

» Find all variables used after method, define as return value
> |dentify instance variables that can be turned into argument

¥ Qofoo

passion for software quelify

Copyright Qafoo GmbH; All Rights Reserved —




Failsafes

» Version Control: Every successful step is one commit

v

IDEs: Automate extract method using tools (PHPStorm, ...)

v

"Scientist”: Keep old code and compare result of old vs new

v

Tests: Verify old logic still works

oo
e
© Qafoo
passion for software qualify
t Qafoo GmbH; ights Reserved




Code Smell: Construction Spread Everywhere!

v

Problem: All parts of your app create and configure objects

v

Complicates the reuse of objects

v

Gravitates application towards use of Singletons
Prevents exchange of code at runtime (dynamic binding)

v

¥ Qofoo

passion for software quelify

Gopyright Qafoo GmbH: All Rights Reserved —




Factory

A factory creates an object for you.

» Getting control over object creation

"
© Qafoo
poassion for soffware quality
Copyright Qafoo GmbH; All Rights Reserved




Factory

A factory creates an object for you.

» Getting control over object creation
» Most important issue for every code-base

oo
e
© Qafoo
passion for software qualify
Copyright Qafoo GmbH; All Rights Reserved




Factory

A factory creates an object for you.

» Getting control over object creation

» Most important issue for every code-base
» Actually 4 patterns

» Factory
» Factory Method
Abstract Factory
» Builder

v

oo
e
© Qafoo
passion for software qualify
Copyright Qafoo GmbH; All Rights Reserved




Refactoring: Move creation knowledge to Factory

1. Extract creation logic into Factory Method

¥ Qofoo

passion for software quelify
; All Rig Servi




Refactoring: Move creation knowledge to Factory

1. Extract creation logic into Factory Method
2. Introduce Lazy Initialization

¥ Qofoo

passion for software qualify
Qafoo GmbH; All Rights Reserved




Refactoring: Move creation knowledge to Factory

1. Extract creation logic into Factory Method
2. Introduce Lazy Initialization
3. Introduce Setter for "Dependency Injection”

¥ Qofoo

passion for software quelify

Copyright Qafoo GmbH: All Rights Reserved —




Refactoring: Move creation knowledge to Factory

Extract creation logic into Factory Method
Introduce Lazy Initialization
Introduce Setter for "Dependency Injection”

M w o

Extract Factory method into class

£ Qafoo

passion for software qualify
Copy it Qafoo GmbH; All Rights Reserved




Refactoring: Move creation knowledge to Factory

Extract creation logic into Factory Method
Introduce Lazy Initialization

Introduce Setter for "Dependency Injection”
Extract Factory method into class

o bk w0

Invert dependency graph

¥ Qofoo

passion for software qualify
Qafoo GmbH; All Rights Reserved




Code Smell: Singleton

» Problem: To fix scattered object creation, Singleton Pattern is
used

» Shared global state that is causing side effects
» Reduced testability

-
© Qafoo
poassion for soffware quality
Copy it Qafoo GmbH; All Rights Reserved




Refactoring: Inline Singleton

» Extract Method: Usage of Singleton into Factory Method

¥ Qofoo

passion for software quelify
; All Rig Reserve




Refactoring: Inline Singleton

» Extract Method: Usage of Singleton into Factory Method
» Introduce Lazy Initialization

¥ Qofoo

passion for software quelify

\t Qafoo GmbH; All Rights Reserved —




Refactoring: Inline Singleton

» Extract Method: Usage of Singleton into Factory Method
» Introduce Lazy Initialization
» Introduce Setter for "Dependency Injection”

¥ Qofoo

passion for software quelify

Copy 0 GmbH: All Rights Reserved —




Code Smell: God Object

v

Problem: Class/Methods too large with multiple
responsibilities that cannot be untangled

v

Prevents reuse of individual parts

v

High complexity

v

Usually grows larger because of Feature Envy

oo
e
© Qafoo
passion for software qualify
t Qafoo GmbH; ights Reserved




Facade

A facade provides a simplified interface to a larger body of code.

"
-
© Qafoo
poassion for soffware quality
Copyright Qafoo GmbH; All Rights Reserved




Facade

A facade provides a simplified interface to a larger body of code.

» Make code reusable (business logic, ..)
» Integrate third party code (libraries)

-
© Qafoo
poassion for soffware quality
Copy it Qafoo GmbH; All Rights Reserved




Facade

A facade provides a simplified interface to a larger body of code.

» Make code reusable (business logic, ..)
» Integrate third party code (libraries)
» Avoid hard dependencies on technical details

oo
e
© Qafoo
passion for software qualify
t Qafoo GmbH; ights Reserved




Facade

A facade provides a simplified interface to a larger body of code.

v

Make code reusable (business logic, ..)
Integrate third party code (libraries)
Avoid hard dependencies on technical details

v

v

v

Strongly Related to the Adapter/Bridge patterns

¥ Qofoo

passion for software quelify

Gopyright Qafoo GmbH: All Rights Reserved —




Refactoring: Compose Methods/Classes

1. Identify lines that should be composed into new method/class

¥ Qofoo

passion for soffware qualify
0 GmbH; All Rights Reserved




Refactoring: Compose Methods/Classes

1. Identify lines that should be composed into new method/class
2. Perform Extract Method

¥ Qofoo

passion for software quelify

Qafoo GmbH; All Rights Reserved —




Refactoring: Compose Methods/Classes

1. Identify lines that should be composed into new method/class
2. Perform Extract Method
3. ldentify Dependencies used in Extracted Method

¥ Qofoo

passion for software quelify

Copyright Qafoo GmbH: All Rights Reserved —




Refactoring: Compose Methods/Classes

Identify lines that should be composed into new method/class
Perform Extract Method

Identify Dependencies used in Extracted Method

Extract Class including dependencies

L=

£ Qafoo

poassion for soffware quality
Copyr Qafoo GmbH; All Rights Reserved




Refactoring: Compose Methods/Classes

Identify lines that should be composed into new method/class
Perform Extract Method

Identify Dependencies used in Extracted Method

Extract Class including dependencies

A

Move method to new class

.
£ Qofoo
passion for soffware quality
Copyr Qafoo GmbH; All Rights Reserved




Refactoring: Compose Methods/Classes

Identify lines that should be composed into new method/class
Perform Extract Method

Identify Dependencies used in Extracted Method

Extract Class including dependencies

Move method to new class

o gk Wb =

Integrate into factory

£ Qafoo

poassion for soffware quality
Copyr Qafoo GmbH; All Rights Reserved




Code Smell: Primitive Obsession

» Problem: Using primitive types of language and libraries
everywhere

» Internals and assumptions of classes are shared throughout
application

» Logic has to be re-implemented everywhere
» Prevents changing the internals

» Leaky abstraction increases the required mental model of
developers

oo
i
2 Qarfoo
passion for software qualify
Copyright Qafoo GmbH; All Rights Reserved




Replace Type Code with Class

1. Identify Primitive variables and Logic




Replace Type Code with Class

1. Identify Primitive variables and Logic
2. Extract into new Method + Class

¥ Qofoo

passion for software qualify
Qafoo GmbH; All Rights Reserved




https://qafoo.com/newsletter

Qofoo

passion for soffware quality

Rent a quality expert

Copyright Qafoo GmbH; All Rights Reserved


https://qafoo.com/newsletter

