
Refactoring towards Design Patterns

Benjamin Eberlei, Qafoo GmbH
October 27, 2016



Motivation

I Neglecting design leads to underengineering
I Over-focusing on Design-Pattern leads to overengineering



Refactoring

I small changes to internal code structure
I external code structure keeps the old behavior

I Method/Function
I Class
I System/API

I Tests increase reliability and speed of refactorings
I No tests are fine: refactorings can be performed very

mechanically/automatically



Refactoring

I small changes to internal code structure
I external code structure keeps the old behavior

I Method/Function
I Class
I System/API

I Tests increase reliability and speed of refactorings
I No tests are fine: refactorings can be performed very

mechanically/automatically



Refactoring

I small changes to internal code structure
I external code structure keeps the old behavior

I Method/Function
I Class
I System/API

I Tests increase reliability and speed of refactorings
I No tests are fine: refactorings can be performed very

mechanically/automatically



Refactoring

I small changes to internal code structure
I external code structure keeps the old behavior

I Method/Function
I Class
I System/API

I Tests increase reliability and speed of refactorings
I No tests are fine: refactorings can be performed very

mechanically/automatically



Refactoring

I small changes to internal code structure
I external code structure keeps the old behavior

I Method/Function
I Class
I System/API

I Tests increase reliability and speed of refactorings
I No tests are fine: refactorings can be performed very

mechanically/automatically



Refactoring

I small changes to internal code structure
I external code structure keeps the old behavior

I Method/Function
I Class
I System/API

I Tests increase reliability and speed of refactorings
I No tests are fine: refactorings can be performed very

mechanically/automatically



Steps

1. Make it work

2. Make it nice



Goals

I Simpler to understand, change
I Reusable
I Less dependencies
I (Unit-) Testable



Design Patterns

A software design pattern is a general reusable solution
to a commonly occurring problem within a given context
in software design. It is not a finished design that can be
transformed directly into source or machine
code. (Wikipedia)



Refactoring and Patterns

There is a natural relation between patterns and
refactoring. Patterns are where you want to be;
refactorings are ways to get there from somewhere
else. (Martin Fowler, Refactoring p. 107)



Refactoring and Patterns

Refactoring towards Patterns to avoid
both under- and overengineering.



Refactoring Basics: Extract Method

I Identify lines to extract from a method/function
I Create new, empty method without arguments
I Copy lines over to new method
I Find all variables declared outside method, define as

argument
I Find all variables used after method, define as return value
I Identify instance variables that can be turned into argument



Failsafes

I Version Control: Every successful step is one commit
I IDEs: Automate extract method using tools (PHPStorm, ...)
I ”Scientist”: Keep old code and compare result of old vs new
I Tests: Verify old logic still works



Code Smell: Construction Spread Everywhere!

I Problem: All parts of your app create and configure objects
I Complicates the reuse of objects
I Gravitates application towards use of Singletons
I Prevents exchange of code at runtime (dynamic binding)



Factory

A factory creates an object for you.

I Getting control over object creation
I Most important issue for every code-base
I Actually 4 patterns

I Factory
I Factory Method
I Abstract Factory
I Builder



Factory

A factory creates an object for you.

I Getting control over object creation
I Most important issue for every code-base
I Actually 4 patterns

I Factory
I Factory Method
I Abstract Factory
I Builder



Factory

A factory creates an object for you.

I Getting control over object creation
I Most important issue for every code-base
I Actually 4 patterns

I Factory
I Factory Method
I Abstract Factory
I Builder



Refactoring: Move creation knowledge to Factory

1. Extract creation logic into Factory Method

2. Introduce Lazy Initialization

3. Introduce Setter for ”Dependency Injection”

4. Extract Factory method into class

5. Invert dependency graph



Refactoring: Move creation knowledge to Factory

1. Extract creation logic into Factory Method

2. Introduce Lazy Initialization

3. Introduce Setter for ”Dependency Injection”

4. Extract Factory method into class

5. Invert dependency graph



Refactoring: Move creation knowledge to Factory

1. Extract creation logic into Factory Method

2. Introduce Lazy Initialization

3. Introduce Setter for ”Dependency Injection”

4. Extract Factory method into class

5. Invert dependency graph



Refactoring: Move creation knowledge to Factory

1. Extract creation logic into Factory Method

2. Introduce Lazy Initialization

3. Introduce Setter for ”Dependency Injection”

4. Extract Factory method into class

5. Invert dependency graph



Refactoring: Move creation knowledge to Factory

1. Extract creation logic into Factory Method

2. Introduce Lazy Initialization

3. Introduce Setter for ”Dependency Injection”

4. Extract Factory method into class

5. Invert dependency graph



Code Smell: Singleton

I Problem: To fix scattered object creation, Singleton Pattern is
used

I Shared global state that is causing side effects
I Reduced testability



Refactoring: Inline Singleton

I Extract Method: Usage of Singleton into Factory Method
I Introduce Lazy Initialization
I Introduce Setter for ”Dependency Injection”



Refactoring: Inline Singleton

I Extract Method: Usage of Singleton into Factory Method
I Introduce Lazy Initialization
I Introduce Setter for ”Dependency Injection”



Refactoring: Inline Singleton

I Extract Method: Usage of Singleton into Factory Method
I Introduce Lazy Initialization
I Introduce Setter for ”Dependency Injection”



Code Smell: God Object

I Problem: Class/Methods too large with multiple
responsibilities that cannot be untangled

I Prevents reuse of individual parts
I High complexity
I Usually grows larger because of Feature Envy



Facade

A facade provides a simplified interface to a larger body of code.

I Make code reusable (business logic, ..)
I Integrate third party code (libraries)
I Avoid hard dependencies on technical details
I Strongly Related to the Adapter/Bridge patterns



Facade

A facade provides a simplified interface to a larger body of code.

I Make code reusable (business logic, ..)
I Integrate third party code (libraries)
I Avoid hard dependencies on technical details
I Strongly Related to the Adapter/Bridge patterns



Facade

A facade provides a simplified interface to a larger body of code.

I Make code reusable (business logic, ..)
I Integrate third party code (libraries)
I Avoid hard dependencies on technical details
I Strongly Related to the Adapter/Bridge patterns



Facade

A facade provides a simplified interface to a larger body of code.

I Make code reusable (business logic, ..)
I Integrate third party code (libraries)
I Avoid hard dependencies on technical details
I Strongly Related to the Adapter/Bridge patterns



Refactoring: Compose Methods/Classes

1. Identify lines that should be composed into new method/class

2. Perform Extract Method

3. Identify Dependencies used in Extracted Method

4. Extract Class including dependencies

5. Move method to new class

6. Integrate into factory



Refactoring: Compose Methods/Classes

1. Identify lines that should be composed into new method/class

2. Perform Extract Method

3. Identify Dependencies used in Extracted Method

4. Extract Class including dependencies

5. Move method to new class

6. Integrate into factory



Refactoring: Compose Methods/Classes

1. Identify lines that should be composed into new method/class

2. Perform Extract Method

3. Identify Dependencies used in Extracted Method

4. Extract Class including dependencies

5. Move method to new class

6. Integrate into factory



Refactoring: Compose Methods/Classes

1. Identify lines that should be composed into new method/class

2. Perform Extract Method

3. Identify Dependencies used in Extracted Method

4. Extract Class including dependencies

5. Move method to new class

6. Integrate into factory



Refactoring: Compose Methods/Classes

1. Identify lines that should be composed into new method/class

2. Perform Extract Method

3. Identify Dependencies used in Extracted Method

4. Extract Class including dependencies

5. Move method to new class

6. Integrate into factory



Refactoring: Compose Methods/Classes

1. Identify lines that should be composed into new method/class

2. Perform Extract Method

3. Identify Dependencies used in Extracted Method

4. Extract Class including dependencies

5. Move method to new class

6. Integrate into factory



Code Smell: Primitive Obsession

I Problem: Using primitive types of language and libraries
everywhere

I Internals and assumptions of classes are shared throughout
application

I Logic has to be re-implemented everywhere
I Prevents changing the internals
I Leaky abstraction increases the required mental model of

developers



Replace Type Code with Class

1. Identify Primitive variables and Logic

2. Extract into new Method + Class



Replace Type Code with Class

1. Identify Primitive variables and Logic

2. Extract into new Method + Class



https://qafoo.com/newsletter

https://qafoo.com/newsletter

