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Motivation

» Neglecting design leads to underengineering

» Over-focusing on Design-Pattern leads to overengineering
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Refactoring

» small changes to internal code structure
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Refactoring

» small changes to internal code structure
» external code structure keeps the old behavior
» Method/Function
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» Method/Function
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Refactoring

» small changes to internal code structure
» external code structure keeps the old behavior

» Method/Function
» Class
» System/API

» Tests increase reliability and speed of refactorings
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Refactoring

v

small changes to internal code structure

external code structure keeps the old behavior

» Method/Function
» Class
» System/API

Tests increase reliability and speed of refactorings

v

v

v

No tests are fine: refactorings can be performed very
mechanically/automatically
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Steps

1. Make it work
2. Make it nice
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Goals

v

Simpler to understand, change
Reusable

v

v

Less dependencies
(Unit-) Testable

v
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Design Patterns

A software design pattern is a general reusable solution
fo a commonly occurring problem within a given context
in software design. It is not a finished design that can be
transformed directly into source or machine

code. (Wikipedia)
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Refactoring and Patterns

There is a natural relation between patterns and
refactoring. Patterns are where you want to be;
refactorings are ways to get there from somewhere
else. (Martin Fowler, Refactoring p. 107)
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Refactoring and Patterns

Refactoring towards Patterns to avoid
both under- and overengineering.




Refactoring Basics: Extract Method

> |dentify lines to extract from a method/function
» Create new, empty method without arguments
» Copy lines over to new method

» Find all variables declared outside method, define as
argument

» Find all variables used after method, define as return value
> |dentify instance variables that can be turned into argument
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Failsafes

» Version Control: Every successful step is one commit

v

IDEs: Automate extract method using tools (PHPStorm, ...)

v

"Scientist”: Keep old code and compare result of old vs new

v

Tests: Verify old logic still works
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Code Smell: Construction Spread Everywhere!

v

Problem: All parts of your app create and configure objects

v

Complicates the reuse of objects

v

Gravitates application towards use of Singletons
Prevents exchange of code at runtime (dynamic binding)

v
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Factory

A factory creates an object for you.

» Getting control over object creation
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Factory

A factory creates an object for you.

» Getting control over object creation
» Most important issue for every code-base
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Factory

A factory creates an object for you.

» Getting control over object creation

» Most important issue for every code-base
» Actually 4 patterns

» Factory
» Factory Method
Abstract Factory
» Builder

v
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Refactoring: Move creation knowledge to Factory

1. Extract creation logic into Factory Method
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Refactoring: Move creation knowledge to Factory

1. Extract creation logic into Factory Method
2. Introduce Lazy Initialization
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Refactoring: Move creation knowledge to Factory

1. Extract creation logic into Factory Method
2. Introduce Lazy Initialization
3. Introduce Setter for "Dependency Injection”
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Refactoring: Move creation knowledge to Factory

Extract creation logic into Factory Method
Introduce Lazy Initialization
Introduce Setter for "Dependency Injection”

M w o

Extract Factory method into class

£ Qafoo

passion for software qualify
Copy it Qafoo GmbH; All Rights Reserved




Refactoring: Move creation knowledge to Factory

Extract creation logic into Factory Method
Introduce Lazy Initialization

Introduce Setter for "Dependency Injection”
Extract Factory method into class

o bk w0

Invert dependency graph
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Code Smell: Singleton

» Problem: To fix scattered object creation, Singleton Pattern is
used

» Shared global state that is causing side effects
» Reduced testability
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Refactoring: Inline Singleton

» Extract Method: Usage of Singleton into Factory Method
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Refactoring: Inline Singleton

» Extract Method: Usage of Singleton into Factory Method
» Introduce Lazy Initialization
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Refactoring: Inline Singleton

» Extract Method: Usage of Singleton into Factory Method
» Introduce Lazy Initialization
» Introduce Setter for "Dependency Injection”
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Code Smell: God Object

v

Problem: Class/Methods too large with multiple
responsibilities that cannot be untangled

v

Prevents reuse of individual parts

v

High complexity

v

Usually grows larger because of Feature Envy
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Facade

A facade provides a simplified interface to a larger body of code.
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Facade

A facade provides a simplified interface to a larger body of code.

» Make code reusable (business logic, ..)
» Integrate third party code (libraries)
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Facade

A facade provides a simplified interface to a larger body of code.

» Make code reusable (business logic, ..)
» Integrate third party code (libraries)
» Avoid hard dependencies on technical details
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Facade

A facade provides a simplified interface to a larger body of code.

v

Make code reusable (business logic, ..)
Integrate third party code (libraries)
Avoid hard dependencies on technical details

v

v

v

Strongly Related to the Adapter/Bridge patterns

¥ Qofoo

passion for software quelify

Gopyright Qafoo GmbH: All Rights Reserved —




Refactoring: Compose Methods/Classes

1. Identify lines that should be composed into new method/class
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Refactoring: Compose Methods/Classes

1. Identify lines that should be composed into new method/class
2. Perform Extract Method
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Refactoring: Compose Methods/Classes

1. Identify lines that should be composed into new method/class
2. Perform Extract Method
3. ldentify Dependencies used in Extracted Method
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Refactoring: Compose Methods/Classes

Identify lines that should be composed into new method/class
Perform Extract Method

Identify Dependencies used in Extracted Method

Extract Class including dependencies

L=
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Refactoring: Compose Methods/Classes

Identify lines that should be composed into new method/class
Perform Extract Method

Identify Dependencies used in Extracted Method

Extract Class including dependencies

A

Move method to new class
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Refactoring: Compose Methods/Classes

Identify lines that should be composed into new method/class
Perform Extract Method

Identify Dependencies used in Extracted Method

Extract Class including dependencies

Move method to new class
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Integrate into factory
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Code Smell: Primitive Obsession

» Problem: Using primitive types of language and libraries
everywhere

» Internals and assumptions of classes are shared throughout
application

» Logic has to be re-implemented everywhere
» Prevents changing the internals

» Leaky abstraction increases the required mental model of
developers

oo
i
2 Qarfoo
passion for software qualify
Copyright Qafoo GmbH; All Rights Reserved




Replace Type Code with Class

1. Identify Primitive variables and Logic




Replace Type Code with Class

1. Identify Primitive variables and Logic
2. Extract into new Method + Class
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