Understand and Use Software Metrics
Confoo.ca

Kore Nordmann (@koredn)

27. Feb 2013

Understand and Use Software Metrics 1/38

About me

» Degree in computer sience

Understand and Use Software Metrics

2/38

About me

» Degree in computer sience
» Professional PHP since 2000

Understand and Use Software Metrics 2/38

About me

» Degree in computer sience
» Professional PHP since 2000
» Open source enthusiast

Understand and Use Software Metrics 2/38

About me

» Degree in computer sience
Professional PHP since 2000
Open source enthusiast

Passion for

» Software Design
» Automated Testing

\4

v

v

Understand and Use Software Metrics 2/38

Co-founder of

#Jalfoo

passion for soffware quality

Understand and Use Software Metrics 3/38

http://qafoo.com

Co-founder of

= ofoo

passion for soffware quality

Helping people to create high quality web applications.
http://qafoo.com

Understand and Use Software Metrics 3/38

http://qafoo.com

Co-founder of

Qafoo

passion for soffware quality

Helping people to create high quality web applications.
http://qafoo.com

» Expert consulting
» Individual training

Understand and Use Software Metrics 3/38

http://qafoo.com

Co-founder of

Qafoo

passion for soffware quality

Helping people to create high quality web applications.
http://qafoo.com

» Expert consulting
» Individual training

Get a training on object oriented design for your team!

Understand and Use Software Metrics 3/38

http://qafoo.com

Why quality?

Time to A
Bugfix /
Feature

Business

Understand and Use Software Metrics

Project Lifetime

4/38

Software metrics

“A software metric is a measure of some property
of a piece of software or its specifications”
(Wikipedia)

Understand and Use Software Metrics 5/38

Applications

» Code Review

» Find weak spots
» Find high impact code

Understand and Use Software Metrics

6/38

Applications

» Code Review

» Find weak spots
» Find high impact code

» Measure Progress

» Watch change rate over time
» Watch quality over time

Understand and Use Software Metrics 6/38

Outline

Classic software metrics
Object oriented software metrics

Conclusion

Understand and Use Software Metrics

7/38

Scale metrics

» How big is my project?

Understand and Use Software Metrics

8/38

Scale metrics

» How big is my project?
> Lines Of *

LOC Lines Of Code
ELOC Executable Lines Of Code
CLOC Comment Lines Of Code
NCLOC Non-Comment Lines Of Code

Understand and Use Software Metrics

8/38

Scale metrics

» How big is my project?

> Lines Of *

LOC
ELOC
CLOC

NCLOC

> Number Of *

NOC
NOM
NOP

Understand and Use Software Metrics

Lines Of Code

Executable Lines Of Code
Comment Lines Of Code
Non-Comment Lines Of Code

Number Of Classes
Number Of Methods
Number Of Packages

8/38

Lines Of *, Number Of *

<?php
namespace foo\bar;

abstract class FooBar { » Lines Of *
abstract function bar();
}

class Foo extends FooBar {

/+ Does this ... x/

public function bar() {
return;

}

/+ Does that ... x/

public function baz() { > Number Of *
/! Comment
return;

}

class Bar extends Foo {
public function foo(Foo $f) {
return;
}

Understand and Use Software Metrics 9/38

Lines Of *, Number Of *

<?php
namespace foo\bar;

abstract class FooBar {
abstract function bar();

}
class Foo extends FooBar {
/* Does this ... #/
public function bar() {
return;
}
/* Does that ... #/
public function baz() {
// Comment
return;

)

class Bar extends Foo {
public function foo(Foo $f) {
return;
}

Understand and Use Software Metrics

» Lines Of *
LOC 24

» Number Of *

9/38

Lines Of *, Number Of *

<?php
namespace foo\bar;

abstract class FooBar {
abstract function bar();
}

class Foo extends FooBar {

/+ Does this ... x/
public function bar() {
return;
}
/+ Does that ... x/
public function baz() {
/! Comment
return;

}
class Bar extends Foo {
public function foo(Foo $f) {

return;
}

Understand and Use Software Metrics

» Lines Of *

LOC 24
ELOC 3

» Number Of *

9/38

Lines Of *, Number Of *

<?php
namespace foo\bar;

abstract class FooBar { » Lines Of *
abstract function bar();

) LOC 24

class Foo extends FooBar { ELOC 3

/* Does this ... %/

public function bar() { CLOC 3
return;

}

/* Does that ... %/

public function baz() { » Number Of *
/1 Comment
return;

}

class Bar extends Foo {
public function foo(Foo $f) {
return;
}

Understand and Use Software Metrics 9/38

Lines Of *, Number Of *

<?php
namespace foo\bar;

abstract class FooBar { » Lines Of *
abstract function bar();

) LOC 24

class Foo extends FooBar { ELOC 3
/+ Does this ... x/
public function bar() { CLOC 3
return;
) NCLOC 21
/+ Does that ... x/
public function baz() { » Number Of *
/! Comment
return;

}
class Bar extends Foo {

public function foo(Foo $f) {
return;
}

Understand and Use Software Metrics 9/38

Lines Of *, Number Of *

<?php
namespace foo\bar;
abstract class FooBar { » Lines Of *
abstract function bar();
) LOC 24
class Foo extends FooBar { ELOC 3
/+ Does this ... x/
public function bar() { CLOC 3
return;
) NCLOC 21
/+ Does that ... x/
public function baz() { » Number Of *
/! Comment

) return; NOC 3
)

class Bar extends Foo {
public function foo(Foo $f) {
return;
}

Understand and Use Software Metrics 9/38

Lines Of *, Number Of *

<?php
namespace foo\bar;
abstract class FooBar { » Lines Of *
abstract function bar();
) LOC 24
class Foo extends FooBar { ELOC 3
/+ Does this ... x/
public function bar() { CLOC 3
return;
) NCLOC 21
/+ Does that ... x/
public function baz() { » Number Of *
/! Comment
return;
) NOC 3
} NOM 4

class Bar extends Foo {
public function foo(Foo $f) {
return;
}

Understand and Use Software Metrics 9/38

Lines Of *, Number Of *

<?php
namespace foo\bar;
abstract class FooBar { > Lines Of *

abstract function bar();

) LOC 24

class Foo extends FooBar { ELOC 3
/+ Does this ... x/
public function bar() { CLOC 3
return;
) NCLOC 21
/+ Does that ... x/
public function baz() { » Number Of *
/! Comment
return;
) NOC 3
} NOM 4
class Bar extends Foo {
public function foo(Foo $f) { NOP 1
return;
}
}
Understand and Use Software Metrics 9/38

Run yourself

$ pear install pear.phpunit.de/phploc
$ phploc src/main/

Lines of Code (LOC):
Comment Lines of Code (CLOC):
Non-Comment Lines of Code (NCLOC):

Namespaces:
Interfaces:
Classes:
Abstract:
Concrete :
Average Class Length (NCLOC) :
Methods :
Scope:
Non-Static:
Static:
Average Method Length (NCLOC) :

Understand and Use Software Metrics

4699
1792
2907
12
32
88
135
134

20

(12.50%)
(87.50%)

(99.26%)
(0.74%)

10/38

Run yourself

$ pear install pear.phpunit.de/phploc
$ phploc src/main/

Lines of Code (LOC):
Comment Lines of Code (CLOC):
Non-Comment Lines of Code (NCLOC):

Namespaces:
Interfaces:
Classes:
Abstract:
Concrete :
Average Class Length (NCLOC) :
Methods :
Scope:
Non-Static:
Static:
Average Method Length (NCLOC) :

Understand and Use Software Metrics

4699
1792
2907
12
32
88
135
134

20

(12.50%)
(87.50%)

(99.26%)
(0.74%)

10/38

Run yourself

$ pear install pear.phpunit.de/phploc
$ phploc src/main/

Lines of Code (LOC):
Comment Lines of Code (CLOC):
Non-Comment Lines of Code (NCLOC):

Namespaces:
Interfaces:
Classes:
Abstract:
Concrete :
Average Class Length (NCLOC) :
Methods :
Scope:
Non-Static:
Static:
Average Method Length (NCLOC) :

Understand and Use Software Metrics

4699
1792
2907
12
32
88
135
134

20

(12.50%)
(87.50%)

(99.26%)
(0.74%)

10/38

Complexity metrics

» How complex is my code?

Understand and Use Software Metrics

11/38

Complexity metrics

» How complex is my code?
» Control structures are the key point to complexity
> if, elseif, for, while, foreach, catch, case, xor, and, or, &&, ||, ?:

Understand and Use Software Metrics 11/38

Complexity metrics

» How complex is my code?
» Control structures are the key point to complexity
> if, elseif, for, while, foreach, catch, case, xor, and, or, &&, ||, ?:

» Cyclomatic Complexity (CCN)
» Number of branches

Understand and Use Software Metrics 11/38

Complexity metrics

» How complex is my code?
» Control structures are the key point to complexity
> if, elseif, for, while, foreach, catch, case, xor, and, or, &&, ||, ?:
» Cyclomatic Complexity (CCN)

» Number of branches
» Extended Cycomatic Complexity (CCN2) actually minds all
those control structures

Understand and Use Software Metrics 11/38

Complexity metrics

» How complex is my code?
» Control structures are the key point to complexity
> if, elseif, for, while, foreach, catch, case, xor, and, or, &&, ||, ?:
» Cyclomatic Complexity (CCN)

» Number of branches
Extended Cycomatic Complexity (CCN2) actually minds all
those control structures

» NPath Complexity

» Number of execution paths
» Minds the structure of blocks

Understand and Use Software Metrics 11/38

Cyclomatic Complexity

<?php
class Foo {
public function foo () {
it ($x) {}
if (Sy) {}
if ($z) { }
return $x;

Understand and Use Software Metrics

12/38

Cyclomatic Complexity

<?php
class Foo {
public function foo () {
it ($x) { }
if (Sy) {}
if ($z) { }
return $x;

Understand and Use Software Metrics

12/38

Cyclomatic Complexity

<?php
class Foo {
public function foo () {
if ($x) { }
it ($y) ()
if ($z) { }
return $x;

Understand and Use Software Metrics

12/38

Cyclomatic Complexity

<?php
class Foo {
public function foo () {
it ($x) {}
if (Sy) {}
it ($z) {}
return $x;

Understand and Use Software Metrics

12/38

Cyclomatic Complexity

<?php
class Foo {
public function foo () {
it ($x) {}
if (Sy) {}
if ($z) { }
return $x;

Understand and Use Software Metrics 12/38

NPath Complexity

<?php
class Foo {
public function foo () {
it ($x) { }
it ($y) {}
it ($z) { }

return $x;

Understand and Use Software Metrics 13/38

NPath Complexity

@

<?php
class Foo {
public function foo () {
it ($x) { }
it ($y) { }
it ($z) { }

return $x;

Understand and Use Software Metrics 13/38

NPath Complexity

<?php
class Foo {
public function foo () {
it ($x) { }
it ($y) { }
it ($z) { }
return $x;

Understand and Use Software Metrics

ée

13/38

NPath Complexity

<?php
class Foo {
public function foo () {
it ($x) { }
it ($y) { }
it ($z) { }
return $x;

Understand and Use Software Metrics 13/38

NPath Complexity

<?php
class Foo {
public function foo () {
it ($x) { }
it ($y) { }
it ($z) { }
return $x;

Understand and Use Software Metrics 13/38

Cyclomatic Complexity

<?php
class Foo {
public function foo () {
if ($x) {
it ($y) {
if ($z) {}
}

return $x;

Understand and Use Software Metrics

14/38

Cyclomatic Complexity

<?php
class Foo {
public function foo () {
it ($x) {
if (8y) {
it ($2) {)

}

return $x;

Understand and Use Software Metrics 14/38

Cyclomatic Complexity

<?php
class Foo {
public function foo () {
if ($x) {
if (8y) {
it ($2) {)
}

return $x;

Understand and Use Software Metrics

14/38

Cyclomatic Complexity

<?php
class Foo {
public function foo () {
if ($x) {
if ($y) {
it ($2) {)
}

return $x;

Understand and Use Software Metrics

14/38

Cyclomatic Complexity

<?php
class Foo {
public function foo () {
if ($x) {
it ($y) {
if ($z) {}
}

return $x;

Understand and Use Software Metrics

14/38

NPath Complexity

<?php
class Foo {
public function foo () {
if ($x) {
it ($y) {
if ($2) { }
)
}

return $x;

Understand and Use Software Metrics 15/38

NPath Complexity

<?php
class Foo {
public function foo () {
if ($x) {

it ($y) {
it ($2) ()
} N
}

return $x;

Understand and Use Software Metrics 15/38

NPath Complexity

<?php
class Foo {
public function foo () {
it ($x) {
it ($y) {
if ($2) { }
)
}

return $x;

Understand and Use Software Metrics 15/38

NPath Complexity

<?php
class Foo {
public function foo () {
it ($x) {
if (8y) {
if ($2) { }
}
}

return $x;

Understand and Use Software Metrics

15/38

NPath Complexity

<?php
class Foo {
public function foo () {
it ($x) {
if (8y) {
if ($2) { }
)
}

return $x;

Understand and Use Software Metrics

15/38

What do you like more?

<?php
class Foo { <?php
public function foo () { class Foo {
it ($x) { public function foo() {
it (8y) { if ($x) {}
it ($z) {) if (Sy) {}
} if ($z) { }
return $x;
return $x; }
} }
}
Understand and Use Software Metrics 16/38

Sensible limits

» Numbers do not tell anything by themselves

» To judge you need limiting values
» Cyclomatic Complexity
> 1-4: low, 5-7: medium, 8-10: high, 11+: hell
» NPath Complexity
> 200: critical mass

Understand and Use Software Metrics 17/38

Sensible limits

» Numbers do not tell anything by themselves
» To judge you need limiting values
» Cyclomatic Complexity
> 1-4: low, 5-7: medium, 8-10: high, 11+: hell
» NPath Complexity
» 200: critical mass

» Limiting values are at your discretion

Understand and Use Software Metrics

17/38

Code Coverage

» How many tests do | need?

Understand and Use Software Metrics

18/38

Code Coverage

» How many tests do | need?
» Line Converage (supported by PHP + XDebug)
» Shows which lines have been executed (by tests)

Understand and Use Software Metrics 18/38

Code Coverage

» How many tests do | need?
» Line Converage (supported by PHP + XDebug)

» Shows which lines have been executed (by tests)
» Path Converage (been worked on)

» Shows which execution paths have been covered

Understand and Use Software Metrics 18/38

Code Coverage

» How many tests do | need?
» Line Converage (supported by PHP + XDebug)

» Shows which lines have been executed (by tests)
» Path Converage (been worked on)

» Shows which execution paths have been covered
» Write at least $nPath tests for every method

Understand and Use Software Metrics 18/38

Code Coverage

v

How many tests do | need?
Line Converage (supported by PHP + XDebug)

» Shows which lines have been executed (by tests)
Path Converage (been worked on)

» Shows which execution paths have been covered
Write at least $nPath tests for every method

Parameter Value Coverage

» Test all execution paths with sane boundary values for every
parameter

v

v

v

Understand and Use Software Metrics 18/38

Code Coverage

v

How many tests do | need?
Line Converage (supported by PHP + XDebug)

» Shows which lines have been executed (by tests)
Path Converage (been worked on)

» Shows which execution paths have been covered
Write at least $nPath tests for every method

Parameter Value Coverage
» Test all execution paths with sane boundary values for every
parameter

» Write at least $nPath = $parameterCount = $boundaries tests
per method

v

v

v

Understand and Use Software Metrics 18/38

Code Coverage

v

How many tests do | need?
Line Converage (supported by PHP + XDebug)

» Shows which lines have been executed (by tests)
Path Converage (been worked on)

» Shows which execution paths have been covered

Write at least $nPath tests for every method
Parameter Value Coverage

» Test all execution paths with sane boundary values for every
parameter

» Write at least $nPath = $parameterCount = $boundaries tests
per method

» Common integer boundaries: —253, -231, 1,0, 1,281 283

v

v

v

Understand and Use Software Metrics 18/38

Are you kidding me?

Understand and Use Software Metrics

'i.
E_ TOO_MANY TESTS

19/38

Combine metrics

» Combined metrics allow interesting observations

Understand and Use Software Metrics

20/38

Combine metrics

» Combined metrics allow interesting observations
» ELOC/NOC
> Average class length

Understand and Use Software Metrics 20/38

Combine metrics

» Combined metrics allow interesting observations
» ELOC/NOC
> Average class length
» ELOC/NOM
> Average method length

Understand and Use Software Metrics 20/38

Combine metrics

» Combined metrics allow interesting observations
» ELOC/NOC
> Average class length
» ELOC /NOM
> Average method length
» CCN/NOM
> Average method complexity

Understand and Use Software Metrics 20/38

Combine metrics: CRAP

Is your code CRAP?

Understand and Use Software Metrics

21/38

Combine metrics: CRAP

Is your code CRAP?

cen(m)? + cen(m), if cov(m) =0
CRAP(m) = < ccn(m), if cov(m) > .95
cen(m)? = (1 — cov(m))® + cen(m), else

» Change Risk Anti Patterns

» ccn(m) — Cyclomatic complexity of a method
» cov(m) — Line coverage of a method

Understand and Use Software Metrics 21/38

Outline

Classic software metrics
Object oriented software metrics

Conclusion

Understand and Use Software Metrics

22/38

Inheritance

Is inheritance used correctly?

Understand and Use Software Metrics

23/38

Object Oriented Systems

MyObject

Understand and Use Software Metrics

24/38

Object Oriented Systems

MyObject

Understand and Use Software Metrics

Weighted Method per Class (WMC)

24/38

Object Oriented Systems

Parent

Weighted Method per Class (WMC)

MyObject Depth of Inheritance Tree (DIT): 1

Understand and Use Software Metrics 24/38

Object Oriented Systems

Weighted Method per Class (WMC)
Depth of Inheritance Tree (DIT): 1
Number Of Children (NOC): 3

Parent
MyObject
ChildA ChildB ChildC

Understand and Use Software Metrics

Chidamber & Kemerer

» A Metrics Suite for Object Oriented Design

Understand and Use Software Metrics

25/38

Chidamber & Kemerer

» A Metrics Suite for Object Oriented Design
» Weighted Methods per Class (WMC)

> Sum of method complexities
> Limiting value: 20 - 50

Understand and Use Software Metrics

25/38

Chidamber & Kemerer

» A Metrics Suite for Object Oriented Design
» Weighted Methods per Class (WMC)
> Sum of method complexities
> Limiting value: 20 - 50
» Number Of Children (NOC)

> Number of class extension
> Indicator for wrong use of abstraction / inheritance

Understand and Use Software Metrics 25/38

Chidamber & Kemerer

» A Metrics Suite for Object Oriented Design
» Weighted Methods per Class (WMC)
> Sum of method complexities
> Limiting value: 20 - 50
> Number Of Children (NOC)

> Number of class extension
> Indicator for wrong use of abstraction / inheritance

» Depth of Inheritance Tree (DIT)

> Inheritance can increase software complexity
> Limiting value: <5
> Commonly limited at component boundary

Understand and Use Software Metrics

25/38

Chidamber & Kemerer

» A Metrics Suite for Object Oriented Design
» Weighted Methods per Class (WMC)
> Sum of method complexities
> Limiting value: 20 - 50
> Number Of Children (NOC)

> Number of class extension
> Indicator for wrong use of abstraction / inheritance

» Depth of Inheritance Tree (DIT)

> Inheritance can increase software complexity
> Limiting value: <& 1
> Commonly limited at component boundary

Understand and Use Software Metrics

25/38

Composition

Are there any evil entities?

Understand and Use Software Metrics

26/38

Object Oriented Systems

MyObject

Understand and Use Software Metrics

27/38

Object Oriented Systems

MyObject

w‘

Understand and Use Software Metrics

SomeTool

Config

WhatEver

27/38

Object Oriented Systems

MyObject uses
+do(Foo) \ SomeTool

ccepts Config

WhatEver

Foo

Understand and Use Software Metrics

27/38

Object Oriented Systems

MyObject
Result creates

—————— |+do(Foo0)

w‘

ccepts

SomeTool

Config

Foo

WhatEver

Understand and Use Software Metrics

Object Oriented Systems

MyObject uses
Result | creates |,40(roo0) \ SomeTool
throws,
ccepts Conﬁg
Exception
WhatEver
Foo

Understand and Use Software Metrics

Object Oriented Systems

MyObject uses P—
Result | creates |,40(roo0) \ SomeTool F—
~ —
throws,
ccepts Conﬁg
Exception
WhatEver
Foo

Understand and Use Software Metrics

Coupling

» Excessive coupling is one of the key problems

Understand and Use Software Metrics

28/38

Coupling

» Excessive coupling is one of the key problems

» Dependencies between artifacts are established by:

> Object instantiations

> Static method calls

> Method parameters

> Thrown and catched exceptions

Understand and Use Software Metrics

Coupling

» Excessive coupling is one of the key problems
» Dependencies between artifacts are established by:

> Object instantiations

> Static method calls

> Method parameters

» Thrown and catched exceptions

» (High) Efferent Coupling Cg (outgoing dependencies)
» Artifact relies on a lot of code
» Artifact tends to be unstable

Understand and Use Software Metrics 28/38

Coupling

» Excessive coupling is one of the key problems
Dependencies between artifacts are established by:

Object instantiations

Static method calls

Method parameters

Thrown and catched exceptions

» (High) Efferent Coupling Cg (outgoing dependencies)
» Artifact relies on a lot of code

» Artifact tends to be unstable
» Also called “Coupling Between Objects” (CBO)

Understand and Use Software Metrics 28/38

Coupling

» Excessive coupling is one of the key problems
» Dependencies between artifacts are established by:

> Object instantiations

> Static method calls

> Method parameters

» Thrown and catched exceptions

» (High) Efferent Coupling Cg (outgoing dependencies)
> Artifact relies on a lot of code

> Artifact tends to be unstable
Also called “Coupling Between Objects” (CBO)

> (High) Afferent Coupling Ca4 (incoming dependencies)

» A lot of code relies on artifact
» Artifact should be really stable

Understand and Use Software Metrics

28/38

Instability vs. Abstractness

Instability:

= CE_
~ Ce+Ca

» Cg: Efferent Coupling
(outgoing)

» Ca: Afferent Coupling
(incoming)

Understand and Use Software Metrics

29/38

Instability vs. Abstractness

Instability:

[
a Ce + Ca

» Cg: Efferent Coupling
(outgoing)

» Ca: Afferent Coupling
(incoming)

Understand and Use Software Metrics

Abstractness:

_ Abstracts
~ Concretes + Abstracts

» Abstracts: Abstract
sub-artificats

» Concretes: Concrete
sub-artificats

29/38

Instability vs. Abstractness

Instability: Abstractness:
Ce A Abstracts
= Ce + Ca ~ Concretes + Abstracts
» Cg: Efferent Coupling » Abstracts: Abstract
(outgoing) sub-artificats
» Ca: Afferent Coupling » Concretes: Concrete
(incoming) sub-artificats

» We have a 100% concrete component, what instability can we
expect here?

Understand and Use Software Metrics 29/38

Instability vs. Abstractness

Instability: Abstractness:

Ce Abstracts

= Ce + Cqp ~ Concretes -+ Abstracts

» Abstracts: Abstract

» Cg: Efferent Coupling
sub-artificats

(outgoing)
» Ca: Afferent Coupling » Concretes: Concrete
(incoming) sub-artificats

» We have a 100% concrete component, what instability can we

expect here?
» What instability could we expect for an abstract class or an

interface?

Understand and Use Software Metrics 29/38

Abstractness & Instability

1.0

0.9

0.8

0.7

0.6

05 @

0.4

Instability

0.3

0.2

0.1

0.0

0.0 0.1
Understand and Use Software Metrics

0.2

0.3

0.4 0.5
Abstraction

0.6

07 08 09 1.0

Generated by PHP_Depend
30/38

Abstractness & Instability

1088 PHP\PMD\Rule\Design)
0.9
0.8
{ PHP\PMD\Renderer) (PHP\PMD\Rule
0.6 jd e
2 05 g
= 05
e}
< 04
~ 03 \\
0.2 7/ N
0.1 —{{PHP\PMD\Node | PHP\PMD)
0.0
00 01 02 03 04 05 06 07 08 09 1.0
Understand and Use Software Metrics Abstraction Generated by PHP_Depend 30/38

Abstractness & Instability

10 (PHP\PMD\Rule\Design)
. Total Classes: 13
0.9 Abstract Classes: 0
Efferent Coupling: 3

0.8 Afferent Coupling: 0

0.7

0.6
2
:?g 05 @
% 0.4
£

0.3

0.2

0.1

0.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Understand and Use Software Metrics Abstraction Generated by PHF_Depend 30/38

Abstractness & Instability

1.0

0.9
0.8

0.7

[PHP\PMD\Rule

0.6

Total Classes: 11

Abstract Classes: 5
Efferent Coupling: 2

05 @

0.4

Afferent Coupling: 2

Instability

0.3

0.2

0.1

0.0

0.0 0.1
Understand and Use Software Metrics

0.2

0.3

0.4 0.5
Abstraction

06 07 08

0.9

1.0

Generated by PHP_Depend

30/38

Abstractness & Instability

1.0
0.9
0.8
0.7
0.6
2
:?g 05 @
% 0.4
E . [PHP\PMD
0.3 Total Classes: 15
0.2 \ Abstract Classes: 5
.) Efferent Coupling: 5
Afferent Coupling: 7
0.1
0.0
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Understand and Use Software Metrics Abstraction Generated by PHE Depend 30/38

Abstractness & Instability

1.0

0.9
0.8

0.7

0.6

05 @

0.4

Instability

0.3

0.2

Total Classes: 10
0.0 — Abstract Classes: 3
0 Efferent Coupling: 2
| Afferent Coupling: 4

I
0.1 —{{PHP\PMD\Node |

04 05

Understand and Use Software Metrics

‘Abstraction

0.6

07 08 09 1.0

Generated by PHP_Depend
30/38

Abstractness & Instability

PHP\PMD\Renderer

Total Classes: 3

Abstract Classes: 0
Efferent Coupling: 1
Afferent Coupling: 1

0.6 e
0.5 '/
0.4
0.3
0.2
0.1
0.0

Instability

00 01 02 03 04 05 06 07 08 09 1.0

i Generated by PHP_Depend
Understand and Use Software Metrics Abstraction 4 —-ep 30/38

CodeRank

» Googles PageRank ™for classes!

Understand and Use Software Metrics

31/38

CodeRank

» Googles PageRank ™for classes!
» Maps software to a graph
» A node (n) for each software artifact
> Package, Class, Method
» An edge (p) for each relation
> Inheritance, Call, Parameter, Exceptions

Understand and Use Software Metrics 31/38

CodeRank

» Googles PageRank ™for classes!

» Maps software to a graph
» A node (r) for each software artifact
» Package, Class, Method
» An edge (p) for each relation
> Inheritance, Call, Parameter, Exceptions

» CodeRank:

CR(m) = Y r((1=d)+d Y r(CR(m)/pr))

r

Understand and Use Software Metrics

31/38

CodeRank

AbstractClass
1,0

BaseClass
1,0

SubCIassﬁ
1,0

Understand and Use Software Metrics

Dependent

1,0

- lteration: 0

32/38

CodeRank

AbstractClass
1,000

BaseClass
1,425

SubCIassr
0,575

Understand and Use Software Metrics

Dependent

0,150

~ |teration: 1

32/38

CodeRank

AbstractClass
1,361

BaseClass
0,703

SubCIassr
0,214

Understand and Use Software Metrics

Dependent

0,150

- |teration: 2

32/38

CodeRank

AbstractClass
0,747

BaseClass
0,395

SubCIassr
0,214

Understand and Use Software Metrics

Dependent

0,150

- lteration: 3

32/38

CodeRank

AbstractClass
0,486

BaseClass
0,395

SubCIassr
0,214

Understand and Use Software Metrics

Dependent

0,150

- |teration: 4

32/38

CodeRank

AbstractClass
0,486

BaseClass
0,395

SubCIassr
0,214

Understand and Use Software Metrics

Dependent

0,150

- lteration: 5

32/38

CodeRank

> Incorporates indirect dependencies

» Locates elements with high effect on the whole system
» Reverse CodeRank:
» Shows dependent components

Understand and Use Software Metrics 33/38

Combined Metrics

» Important classes to test: CR + WMC
» Easy test subjects: Ce = 0 (and high CR or WMC)

Understand and Use Software Metrics 34/38

Outline

Classic software metrics
Object oriented software metrics

Conclusion

Understand and Use Software Metrics

35/38

Metrics are . ..

» ... no magic, but simple measured values
> ... useless without limiting values

> ... scalable — grow with project growth

> ... reproducible and automatable

> ... objective — since calculated by software

Understand and Use Software Metrics 36/38

Metrics are . ..

> ... no magic, but simple measured values

> ... useless without limiting values

> ... scalable — grow with project growth

> ... reproducible and automatable

> ... objective — since calculated by software

> ... highly interpretable — interpretation depends on viewer

Understand and Use Software Metrics 36/38

Projects used

PHPLoc:
https://github.com/sebastianbergmann/phploc

PDepend:

http://pdepend.org/

PHP Mess Detector (PHPMD):
http://phpmd.org/

Qafoo Code Review (CRT):
https://github.com/Qafoo/review

v

v

v

v

Understand and Use Software Metrics 37/38

https://github.com/sebastianbergmann/phploc
http://pdepend.org/
http://phpmd.org/
https://github.com/Qafoo/review

Thanks for Listening

Rate this talk: https://joind.in/7867

Understand and Use Software Metrics

38/38

https://joind.in/7867
http://qafoo.com

Thanks for Listening

Rate this talk: https://joind.in/7867
Stay in touch
» Kore Nordmann

» kore@gafoo.com
» @koredn / @qafoo

Rent a web quality expert:
http://qafoo.com

Understand and Use Software Metrics 38/38

https://joind.in/7867
http://qafoo.com

	Classic software metrics
	Object oriented software metrics
	Conclusion

