
Understand and Use Software Metrics
Confoo.ca

Kore Nordmann (@koredn)

27. Feb 2013

Understand and Use Software Metrics 1 / 38

About me

I Degree in computer sience
I Professional PHP since 2000
I Open source enthusiast
I Passion for

I Software Design
I Automated Testing

Understand and Use Software Metrics 2 / 38

About me

I Degree in computer sience
I Professional PHP since 2000
I Open source enthusiast
I Passion for

I Software Design
I Automated Testing

Understand and Use Software Metrics 2 / 38

About me

I Degree in computer sience
I Professional PHP since 2000
I Open source enthusiast
I Passion for

I Software Design
I Automated Testing

Understand and Use Software Metrics 2 / 38

About me

I Degree in computer sience
I Professional PHP since 2000
I Open source enthusiast
I Passion for

I Software Design
I Automated Testing

Understand and Use Software Metrics 2 / 38

Co-founder of

Qafoo
passion for software quality

Helping people to create high quality web applications.
http://qafoo.com

I Expert consulting
I Individual training

Get a training on object oriented design for your team!

Understand and Use Software Metrics 3 / 38

http://qafoo.com

Co-founder of

Qafoo
passion for software quality

Helping people to create high quality web applications.
http://qafoo.com

I Expert consulting
I Individual training

Get a training on object oriented design for your team!

Understand and Use Software Metrics 3 / 38

http://qafoo.com

Co-founder of

Qafoo
passion for software quality

Helping people to create high quality web applications.
http://qafoo.com

I Expert consulting
I Individual training

Get a training on object oriented design for your team!

Understand and Use Software Metrics 3 / 38

http://qafoo.com

Co-founder of

Qafoo
passion for software quality

Helping people to create high quality web applications.
http://qafoo.com

I Expert consulting
I Individual training

Get a training on object oriented design for your team!

Understand and Use Software Metrics 3 / 38

http://qafoo.com

Why quality?

Project Lifetime

Time to
Bugfix /
Feature

Business
Value

Understand and Use Software Metrics 4 / 38

Software metrics

“A software metric is a measure of some property
of a piece of software or its specifications”

(Wikipedia)

Understand and Use Software Metrics 5 / 38

Applications

I Code Review
I Find weak spots
I Find high impact code

I Measure Progress
I Watch change rate over time
I Watch quality over time

Understand and Use Software Metrics 6 / 38

Applications

I Code Review
I Find weak spots
I Find high impact code

I Measure Progress
I Watch change rate over time
I Watch quality over time

Understand and Use Software Metrics 6 / 38

Outline

Classic software metrics

Object oriented software metrics

Conclusion

Understand and Use Software Metrics 7 / 38

Scale metrics

I How big is my project?
I Lines Of *

LOC Lines Of Code
ELOC Executable Lines Of Code
CLOC Comment Lines Of Code

NCLOC Non-Comment Lines Of Code

I Number Of *
NOC Number Of Classes
NOM Number Of Methods
NOP Number Of Packages

Understand and Use Software Metrics 8 / 38

Scale metrics

I How big is my project?
I Lines Of *

LOC Lines Of Code
ELOC Executable Lines Of Code
CLOC Comment Lines Of Code

NCLOC Non-Comment Lines Of Code

I Number Of *
NOC Number Of Classes
NOM Number Of Methods
NOP Number Of Packages

Understand and Use Software Metrics 8 / 38

Scale metrics

I How big is my project?
I Lines Of *

LOC Lines Of Code
ELOC Executable Lines Of Code
CLOC Comment Lines Of Code

NCLOC Non-Comment Lines Of Code

I Number Of *
NOC Number Of Classes
NOM Number Of Methods
NOP Number Of Packages

Understand and Use Software Metrics 8 / 38

Lines Of *, Number Of *

1 <?php
2 namespace foo \bar ;
3
4 abstract class FooBar {
5 abstract function bar () ;
6 }

7
8 class Foo extends FooBar {
9 /∗ Does t h i s . . . ∗ /

10 public function bar () {
11 return ;
12 }

13
14 /∗ Does t h a t . . . ∗ /
15 public function baz () {
16 / / Comment
17 return ;
18 }

19 }

20
21 class Bar extends Foo {
22 public function foo (Foo $f) {
23 return ;
24 }

25 }

I Lines Of *
LOC 24

ELOC 3
CLOC 3

NCLOC 21

I Number Of *
NOC 3
NOM 4
NOP 1

Understand and Use Software Metrics 9 / 38

Lines Of *, Number Of *

1 <?php
2 namespace foo \bar ;
3
4 abstract class FooBar {
5 abstract function bar () ;
6 }

7
8 class Foo extends FooBar {
9 /∗ Does t h i s . . . ∗ /

10 public function bar () {
11 return ;
12 }

13
14 /∗ Does t h a t . . . ∗ /
15 public function baz () {
16 / / Comment
17 return ;
18 }

19 }

20
21 class Bar extends Foo {
22 public function foo (Foo $f) {
23 return ;
24 }

25 }

I Lines Of *
LOC 24

ELOC 3
CLOC 3

NCLOC 21

I Number Of *
NOC 3
NOM 4
NOP 1

Understand and Use Software Metrics 9 / 38

Lines Of *, Number Of *

1 <?php
2 namespace foo \bar ;
3
4 abstract class FooBar {
5 abstract function bar () ;
6 }

7
8 class Foo extends FooBar {
9 /∗ Does t h i s . . . ∗ /

10 public function bar () {
11 return ;
12 }

13
14 /∗ Does t h a t . . . ∗ /
15 public function baz () {
16 / / Comment
17 return ;
18 }

19 }

20
21 class Bar extends Foo {
22 public function foo (Foo $f) {
23 return ;
24 }

25 }

I Lines Of *
LOC 24

ELOC 3
CLOC 3

NCLOC 21

I Number Of *
NOC 3
NOM 4
NOP 1

Understand and Use Software Metrics 9 / 38

Lines Of *, Number Of *

1 <?php
2 namespace foo \bar ;
3
4 abstract class FooBar {
5 abstract function bar () ;
6 }

7
8 class Foo extends FooBar {
9 /∗ Does t h i s . . . ∗ /

10 public function bar () {
11 return ;
12 }

13
14 /∗ Does t h a t . . . ∗ /
15 public function baz () {
16 / / Comment
17 return ;
18 }

19 }

20
21 class Bar extends Foo {
22 public function foo (Foo $f) {
23 return ;
24 }

25 }

I Lines Of *
LOC 24

ELOC 3
CLOC 3

NCLOC 21

I Number Of *
NOC 3
NOM 4
NOP 1

Understand and Use Software Metrics 9 / 38

Lines Of *, Number Of *

1 <?php
2 namespace foo \bar ;
3
4 abstract class FooBar {
5 abstract function bar () ;
6 }

7
8 class Foo extends FooBar {
9 /∗ Does t h i s . . . ∗ /

10 public function bar () {
11 return ;
12 }

13
14 /∗ Does t h a t . . . ∗ /
15 public function baz () {
16 / / Comment
17 return ;
18 }

19 }

20
21 class Bar extends Foo {
22 public function foo (Foo $f) {
23 return ;
24 }

25 }

I Lines Of *
LOC 24

ELOC 3
CLOC 3

NCLOC 21

I Number Of *
NOC 3
NOM 4
NOP 1

Understand and Use Software Metrics 9 / 38

Lines Of *, Number Of *

1 <?php
2 namespace foo \bar ;
3
4 abstract class FooBar {
5 abstract function bar () ;
6 }

7
8 class Foo extends FooBar {
9 /∗ Does t h i s . . . ∗ /

10 public function bar () {
11 return ;
12 }

13
14 /∗ Does t h a t . . . ∗ /
15 public function baz () {
16 / / Comment
17 return ;
18 }

19 }

20
21 class Bar extends Foo {
22 public function foo (Foo $f) {
23 return ;
24 }

25 }

I Lines Of *
LOC 24

ELOC 3
CLOC 3

NCLOC 21

I Number Of *
NOC 3
NOM 4
NOP 1

Understand and Use Software Metrics 9 / 38

Lines Of *, Number Of *

1 <?php
2 namespace foo \bar ;
3
4 abstract class FooBar {
5 abstract function bar () ;
6 }

7
8 class Foo extends FooBar {
9 /∗ Does t h i s . . . ∗ /

10 public function bar () {
11 return ;
12 }

13
14 /∗ Does t h a t . . . ∗ /
15 public function baz () {
16 / / Comment
17 return ;
18 }

19 }

20
21 class Bar extends Foo {
22 public function foo (Foo $f) {
23 return ;
24 }

25 }

I Lines Of *
LOC 24

ELOC 3
CLOC 3

NCLOC 21

I Number Of *
NOC 3
NOM 4
NOP 1

Understand and Use Software Metrics 9 / 38

Lines Of *, Number Of *

1 <?php
2 namespace foo \bar ;
3
4 abstract class FooBar {
5 abstract function bar () ;
6 }

7
8 class Foo extends FooBar {
9 /∗ Does t h i s . . . ∗ /

10 public function bar () {
11 return ;
12 }

13
14 /∗ Does t h a t . . . ∗ /
15 public function baz () {
16 / / Comment
17 return ;
18 }

19 }

20
21 class Bar extends Foo {
22 public function foo (Foo $f) {
23 return ;
24 }

25 }

I Lines Of *
LOC 24

ELOC 3
CLOC 3

NCLOC 21

I Number Of *
NOC 3
NOM 4
NOP 1

Understand and Use Software Metrics 9 / 38

Run yourself

1 $ pear i n s t a l l pear . phpuni t . de / phploc
2 $ phploc src / main /
3
4 Lines o f Code (LOC) : 4699
5 Comment Lines o f Code (CLOC) : 1792
6 Non−Comment Lines o f Code (NCLOC) : 2907
7
8 Namespaces : 12
9 I n t e r f a c e s : 1

10 Classes : 32
11 Abs t rac t : 4 (12.50%)
12 Concrete : 28 (87.50%)
13 Average Class Length (NCLOC) : 88
14 Methods : 135
15 Scope :
16 Non−S t a t i c : 134 (99.26%)
17 S t a t i c : 1 (0.74%)
18 Average Method Length (NCLOC) : 20

Understand and Use Software Metrics 10 / 38

Run yourself

1 $ pear i n s t a l l pear . phpuni t . de / phploc
2 $ phploc src / main /
3
4 Lines o f Code (LOC) : 4699
5 Comment Lines o f Code (CLOC) : 1792
6 Non−Comment Lines o f Code (NCLOC) : 2907
7
8 Namespaces : 12
9 I n t e r f a c e s : 1

10 Classes : 32
11 Abs t rac t : 4 (12.50%)
12 Concrete : 28 (87.50%)
13 Average Class Length (NCLOC) : 88
14 Methods : 135
15 Scope :
16 Non−S t a t i c : 134 (99.26%)
17 S t a t i c : 1 (0.74%)
18 Average Method Length (NCLOC) : 20

Understand and Use Software Metrics 10 / 38

Run yourself

1 $ pear i n s t a l l pear . phpuni t . de / phploc
2 $ phploc src / main /
3
4 Lines o f Code (LOC) : 4699
5 Comment Lines o f Code (CLOC) : 1792
6 Non−Comment Lines o f Code (NCLOC) : 2907
7
8 Namespaces : 12
9 I n t e r f a c e s : 1

10 Classes : 32
11 Abs t rac t : 4 (12.50%)
12 Concrete : 28 (87.50%)
13 Average Class Length (NCLOC) : 88
14 Methods : 135
15 Scope :
16 Non−S t a t i c : 134 (99.26%)
17 S t a t i c : 1 (0.74%)
18 Average Method Length (NCLOC) : 20

Understand and Use Software Metrics 10 / 38

Complexity metrics

I How complex is my code?
I Control structures are the key point to complexity

I if, elseif, for, while, foreach, catch, case, xor, and, or, &&, ||, ?:

I Cyclomatic Complexity (CCN)
I Number of branches
I Extended Cycomatic Complexity (CCN2) actually minds all

those control structures
I NPath Complexity

I Number of execution paths
I Minds the structure of blocks

Understand and Use Software Metrics 11 / 38

Complexity metrics

I How complex is my code?
I Control structures are the key point to complexity

I if, elseif, for, while, foreach, catch, case, xor, and, or, &&, ||, ?:

I Cyclomatic Complexity (CCN)
I Number of branches
I Extended Cycomatic Complexity (CCN2) actually minds all

those control structures
I NPath Complexity

I Number of execution paths
I Minds the structure of blocks

Understand and Use Software Metrics 11 / 38

Complexity metrics

I How complex is my code?
I Control structures are the key point to complexity

I if, elseif, for, while, foreach, catch, case, xor, and, or, &&, ||, ?:

I Cyclomatic Complexity (CCN)
I Number of branches
I Extended Cycomatic Complexity (CCN2) actually minds all

those control structures
I NPath Complexity

I Number of execution paths
I Minds the structure of blocks

Understand and Use Software Metrics 11 / 38

Complexity metrics

I How complex is my code?
I Control structures are the key point to complexity

I if, elseif, for, while, foreach, catch, case, xor, and, or, &&, ||, ?:

I Cyclomatic Complexity (CCN)
I Number of branches
I Extended Cycomatic Complexity (CCN2) actually minds all

those control structures
I NPath Complexity

I Number of execution paths
I Minds the structure of blocks

Understand and Use Software Metrics 11 / 38

Complexity metrics

I How complex is my code?
I Control structures are the key point to complexity

I if, elseif, for, while, foreach, catch, case, xor, and, or, &&, ||, ?:

I Cyclomatic Complexity (CCN)
I Number of branches
I Extended Cycomatic Complexity (CCN2) actually minds all

those control structures
I NPath Complexity

I Number of execution paths
I Minds the structure of blocks

Understand and Use Software Metrics 11 / 38

Cyclomatic Complexity

1 <?php
2 class Foo {
3 public function foo () {
4 i f ($x) { }
5 i f ($y) { }
6 i f ($z) { }
7 return $x ;
8 }

9 }

σ

CCN: 0

Understand and Use Software Metrics 12 / 38

Cyclomatic Complexity

1 <?php
2 class Foo {
3 public function foo () {
4 i f ($x) { }
5 i f ($y) { }
6 i f ($z) { }
7 return $x ;
8 }

9 }

σ

CCN: 1

if($x)

Understand and Use Software Metrics 12 / 38

Cyclomatic Complexity

1 <?php
2 class Foo {
3 public function foo () {
4 i f ($x) { }
5 i f ($y) { }
6 i f ($z) { }
7 return $x ;
8 }

9 }

σ

CCN: 2

if($x) if($y)

Understand and Use Software Metrics 12 / 38

Cyclomatic Complexity

1 <?php
2 class Foo {
3 public function foo () {
4 i f ($x) { }
5 i f ($y) { }
6 i f ($z) { }
7 return $x ;
8 }

9 }

σ

CCN: 3

if($x) if($y) if($z)

Understand and Use Software Metrics 12 / 38

Cyclomatic Complexity

1 <?php
2 class Foo {
3 public function foo () {
4 i f ($x) { }
5 i f ($y) { }
6 i f ($z) { }
7 return $x ;
8 }

9 }

σ

CCN: 4

if($x) if($y) if($z)

Understand and Use Software Metrics 12 / 38

NPath Complexity

1 <?php
2 class Foo {
3 public function foo () {
4 i f ($x) { }
5 i f ($y) { }
6 i f ($z) { }
7 return $x ;
8 }

9 }

σ

NPath: 0

Understand and Use Software Metrics 13 / 38

NPath Complexity

1 <?php
2 class Foo {
3 public function foo () {
4 i f ($x) { }
5 i f ($y) { }
6 i f ($z) { }
7 return $x ;
8 }

9 }

σ

NPath: 0

if($x)

Understand and Use Software Metrics 13 / 38

NPath Complexity

1 <?php
2 class Foo {
3 public function foo () {
4 i f ($x) { }
5 i f ($y) { }
6 i f ($z) { }
7 return $x ;
8 }

9 }

σ

NPath: 0

if($x)

if($y)
false

if($y)
true

Understand and Use Software Metrics 13 / 38

NPath Complexity

1 <?php
2 class Foo {
3 public function foo () {
4 i f ($x) { }
5 i f ($y) { }
6 i f ($z) { }
7 return $x ;
8 }

9 }

σ

NPath: 0

if($x)

if($y)
false

if($y)
true

if($z)

false

if($z)

true

if($z)

false

if($z)

true

Understand and Use Software Metrics 13 / 38

NPath Complexity

1 <?php
2 class Foo {
3 public function foo () {
4 i f ($x) { }
5 i f ($y) { }
6 i f ($z) { }
7 return $x ;
8 }

9 }

σ

NPath: 8

if($x)

if($y)
false

if($y)
true

if($z)

false

if($z)

true

if($z)

false

if($z)

true

true

false true

false true

false true

false

Understand and Use Software Metrics 13 / 38

Cyclomatic Complexity

1 <?php
2 class Foo {
3 public function foo () {
4 i f ($x) {
5 i f ($y) {
6 i f ($z) { }
7 }

8 }

9 return $x ;
10 }

11 }

σ

CCN: 0

Understand and Use Software Metrics 14 / 38

Cyclomatic Complexity

1 <?php
2 class Foo {
3 public function foo () {
4 i f ($x) {
5 i f ($y) {
6 i f ($z) { }
7 }

8 }

9 return $x ;
10 }

11 }

σ

CCN: 1

if($x)

Understand and Use Software Metrics 14 / 38

Cyclomatic Complexity

1 <?php
2 class Foo {
3 public function foo () {
4 i f ($x) {
5 i f ($y) {
6 i f ($z) { }
7 }

8 }

9 return $x ;
10 }

11 }

σ

CCN: 2

if($x) if($y)

Understand and Use Software Metrics 14 / 38

Cyclomatic Complexity

1 <?php
2 class Foo {
3 public function foo () {
4 i f ($x) {
5 i f ($y) {
6 i f ($z) { }
7 }

8 }

9 return $x ;
10 }

11 }

σ

CCN: 3

if($x) if($y) if($z)

Understand and Use Software Metrics 14 / 38

Cyclomatic Complexity

1 <?php
2 class Foo {
3 public function foo () {
4 i f ($x) {
5 i f ($y) {
6 i f ($z) { }
7 }

8 }

9 return $x ;
10 }

11 }

σ

CCN: 4

if($x) if($y) if($z)

Understand and Use Software Metrics 14 / 38

NPath Complexity

1 <?php
2 class Foo {
3 public function foo () {
4 i f ($x) {
5 i f ($y) {
6 i f ($z) { }
7 }

8 }

9 return $x ;
10 }

11 }

σ

NPath: 0

Understand and Use Software Metrics 15 / 38

NPath Complexity

1 <?php
2 class Foo {
3 public function foo () {
4 i f ($x) {
5 i f ($y) {
6 i f ($z) { }
7 }

8 }

9 return $x ;
10 }

11 }

σ

NPath: 1

if($x)

false

Understand and Use Software Metrics 15 / 38

NPath Complexity

1 <?php
2 class Foo {
3 public function foo () {
4 i f ($x) {
5 i f ($y) {
6 i f ($z) { }
7 }

8 }

9 return $x ;
10 }

11 }

σ

NPath: 2

if($x)

false

if($y)
true

false

Understand and Use Software Metrics 15 / 38

NPath Complexity

1 <?php
2 class Foo {
3 public function foo () {
4 i f ($x) {
5 i f ($y) {
6 i f ($z) { }
7 }

8 }

9 return $x ;
10 }

11 }

σ

NPath: 3

if($x)

false

if($y)
true

false

if($z)
true

false

Understand and Use Software Metrics 15 / 38

NPath Complexity

1 <?php
2 class Foo {
3 public function foo () {
4 i f ($x) {
5 i f ($y) {
6 i f ($z) { }
7 }

8 }

9 return $x ;
10 }

11 }

σ

NPath: 4

if($x)

false

if($y)
true

false

if($z)
true

false

true

Understand and Use Software Metrics 15 / 38

What do you like more?

1 <?php
2 class Foo {
3 public function foo () {
4 i f ($x) {
5 i f ($y) {
6 i f ($z) { }
7 }

8 }

9 return $x ;
10 }

11 }

1 <?php
2 class Foo {
3 public function foo () {
4 i f ($x) { }
5 i f ($y) { }
6 i f ($z) { }
7 return $x ;
8 }

9 }

Understand and Use Software Metrics 16 / 38

Sensible limits

I Numbers do not tell anything by themselves
I To judge you need limiting values

I Cyclomatic Complexity
I 1-4: low, 5-7: medium, 8-10: high, 11+: hell

I NPath Complexity
I 200: critical mass

I Limiting values are at your discretion

Understand and Use Software Metrics 17 / 38

Sensible limits

I Numbers do not tell anything by themselves
I To judge you need limiting values

I Cyclomatic Complexity
I 1-4: low, 5-7: medium, 8-10: high, 11+: hell

I NPath Complexity
I 200: critical mass

I Limiting values are at your discretion

Understand and Use Software Metrics 17 / 38

Code Coverage

I How many tests do I need?
I Line Converage (supported by PHP + XDebug)

I Shows which lines have been executed (by tests)
I Path Converage (been worked on)

I Shows which execution paths have been covered
I Write at least $nPath tests for every method

I Parameter Value Coverage
I Test all execution paths with sane boundary values for every

parameter
I Write at least $nPath ∗ $parameterCount ∗ $boundaries tests

per method
I Common integer boundaries: −263,−231,−1, 0, 1, 231, 263

Understand and Use Software Metrics 18 / 38

Code Coverage

I How many tests do I need?
I Line Converage (supported by PHP + XDebug)

I Shows which lines have been executed (by tests)
I Path Converage (been worked on)

I Shows which execution paths have been covered
I Write at least $nPath tests for every method

I Parameter Value Coverage
I Test all execution paths with sane boundary values for every

parameter
I Write at least $nPath ∗ $parameterCount ∗ $boundaries tests

per method
I Common integer boundaries: −263,−231,−1, 0, 1, 231, 263

Understand and Use Software Metrics 18 / 38

Code Coverage

I How many tests do I need?
I Line Converage (supported by PHP + XDebug)

I Shows which lines have been executed (by tests)
I Path Converage (been worked on)

I Shows which execution paths have been covered
I Write at least $nPath tests for every method

I Parameter Value Coverage
I Test all execution paths with sane boundary values for every

parameter
I Write at least $nPath ∗ $parameterCount ∗ $boundaries tests

per method
I Common integer boundaries: −263,−231,−1, 0, 1, 231, 263

Understand and Use Software Metrics 18 / 38

Code Coverage

I How many tests do I need?
I Line Converage (supported by PHP + XDebug)

I Shows which lines have been executed (by tests)
I Path Converage (been worked on)

I Shows which execution paths have been covered
I Write at least $nPath tests for every method

I Parameter Value Coverage
I Test all execution paths with sane boundary values for every

parameter
I Write at least $nPath ∗ $parameterCount ∗ $boundaries tests

per method
I Common integer boundaries: −263,−231,−1, 0, 1, 231, 263

Understand and Use Software Metrics 18 / 38

Code Coverage

I How many tests do I need?
I Line Converage (supported by PHP + XDebug)

I Shows which lines have been executed (by tests)
I Path Converage (been worked on)

I Shows which execution paths have been covered
I Write at least $nPath tests for every method

I Parameter Value Coverage
I Test all execution paths with sane boundary values for every

parameter
I Write at least $nPath ∗ $parameterCount ∗ $boundaries tests

per method
I Common integer boundaries: −263,−231,−1, 0, 1, 231, 263

Understand and Use Software Metrics 18 / 38

Code Coverage

I How many tests do I need?
I Line Converage (supported by PHP + XDebug)

I Shows which lines have been executed (by tests)
I Path Converage (been worked on)

I Shows which execution paths have been covered
I Write at least $nPath tests for every method

I Parameter Value Coverage
I Test all execution paths with sane boundary values for every

parameter
I Write at least $nPath ∗ $parameterCount ∗ $boundaries tests

per method
I Common integer boundaries: −263,−231,−1, 0, 1, 231, 263

Understand and Use Software Metrics 18 / 38

Code Coverage

I How many tests do I need?
I Line Converage (supported by PHP + XDebug)

I Shows which lines have been executed (by tests)
I Path Converage (been worked on)

I Shows which execution paths have been covered
I Write at least $nPath tests for every method

I Parameter Value Coverage
I Test all execution paths with sane boundary values for every

parameter
I Write at least $nPath ∗ $parameterCount ∗ $boundaries tests

per method
I Common integer boundaries: −263,−231,−1, 0, 1, 231, 263

Understand and Use Software Metrics 18 / 38

Are you kidding me?

Understand and Use Software Metrics 19 / 38

Combine metrics

I Combined metrics allow interesting observations
I ELOC / NOC

I Average class length
I ELOC / NOM

I Average method length
I CCN / NOM

I Average method complexity

Understand and Use Software Metrics 20 / 38

Combine metrics

I Combined metrics allow interesting observations
I ELOC / NOC

I Average class length
I ELOC / NOM

I Average method length
I CCN / NOM

I Average method complexity

Understand and Use Software Metrics 20 / 38

Combine metrics

I Combined metrics allow interesting observations
I ELOC / NOC

I Average class length
I ELOC / NOM

I Average method length
I CCN / NOM

I Average method complexity

Understand and Use Software Metrics 20 / 38

Combine metrics

I Combined metrics allow interesting observations
I ELOC / NOC

I Average class length
I ELOC / NOM

I Average method length
I CCN / NOM

I Average method complexity

Understand and Use Software Metrics 20 / 38

Combine metrics: CRAP

Is your code CRAP?

CRAP(m) =


ccn(m)2 + ccn(m), if cov(m) = 0
ccn(m), if cov(m) ≥ .95
ccn(m)2 ∗ (1 − cov(m))3 + ccn(m), else

I Change Risk Anti Patterns

I ccn(m) – Cyclomatic complexity of a method
I cov(m) – Line coverage of a method

Understand and Use Software Metrics 21 / 38

Combine metrics: CRAP

Is your code CRAP?

CRAP(m) =


ccn(m)2 + ccn(m), if cov(m) = 0
ccn(m), if cov(m) ≥ .95
ccn(m)2 ∗ (1 − cov(m))3 + ccn(m), else

I Change Risk Anti Patterns

I ccn(m) – Cyclomatic complexity of a method
I cov(m) – Line coverage of a method

Understand and Use Software Metrics 21 / 38

Outline

Classic software metrics

Object oriented software metrics

Conclusion

Understand and Use Software Metrics 22 / 38

Inheritance

Is inheritance used correctly?

Understand and Use Software Metrics 23 / 38

Object Oriented Systems

MyObject

Understand and Use Software Metrics 24 / 38

Object Oriented Systems

MyObject Weighted Method per Class (WMC)

Understand and Use Software Metrics 24 / 38

Object Oriented Systems

MyObject Weighted Method per Class (WMC)

Parent

Depth of Inheritance Tree (DIT): 1

Understand and Use Software Metrics 24 / 38

Object Oriented Systems

MyObject Weighted Method per Class (WMC)

Parent

Depth of Inheritance Tree (DIT): 1

ChildBChildA ChildC

Number Of Children (NOC): 3

Understand and Use Software Metrics 24 / 38

Chidamber & Kemerer

I A Metrics Suite for Object Oriented Design
I Weighted Methods per Class (WMC)

I Sum of method complexities
I Limiting value: 20 - 50

I Number Of Children (NOC)
I Number of class extension
I Indicator for wrong use of abstraction / inheritance

I Depth of Inheritance Tree (DIT)
I Inheritance can increase software complexity
I Limiting value: ≤ 5 1
I Commonly limited at component boundary

Understand and Use Software Metrics 25 / 38

Chidamber & Kemerer

I A Metrics Suite for Object Oriented Design
I Weighted Methods per Class (WMC)

I Sum of method complexities
I Limiting value: 20 - 50

I Number Of Children (NOC)
I Number of class extension
I Indicator for wrong use of abstraction / inheritance

I Depth of Inheritance Tree (DIT)
I Inheritance can increase software complexity
I Limiting value: ≤ 5 1
I Commonly limited at component boundary

Understand and Use Software Metrics 25 / 38

Chidamber & Kemerer

I A Metrics Suite for Object Oriented Design
I Weighted Methods per Class (WMC)

I Sum of method complexities
I Limiting value: 20 - 50

I Number Of Children (NOC)
I Number of class extension
I Indicator for wrong use of abstraction / inheritance

I Depth of Inheritance Tree (DIT)
I Inheritance can increase software complexity
I Limiting value: ≤ 5 1
I Commonly limited at component boundary

Understand and Use Software Metrics 25 / 38

Chidamber & Kemerer

I A Metrics Suite for Object Oriented Design
I Weighted Methods per Class (WMC)

I Sum of method complexities
I Limiting value: 20 - 50

I Number Of Children (NOC)
I Number of class extension
I Indicator for wrong use of abstraction / inheritance

I Depth of Inheritance Tree (DIT)
I Inheritance can increase software complexity
I Limiting value: ≤ 5
I Commonly limited at component boundary

Understand and Use Software Metrics 25 / 38

Chidamber & Kemerer

I A Metrics Suite for Object Oriented Design
I Weighted Methods per Class (WMC)

I Sum of method complexities
I Limiting value: 20 - 50

I Number Of Children (NOC)
I Number of class extension
I Indicator for wrong use of abstraction / inheritance

I Depth of Inheritance Tree (DIT)
I Inheritance can increase software complexity
I Limiting value: ≤ 5 1
I Commonly limited at component boundary

Understand and Use Software Metrics 25 / 38

Composition

Are there any evil entities?

Understand and Use Software Metrics 26 / 38

Object Oriented Systems

MyObject

Understand and Use Software Metrics 27 / 38

Object Oriented Systems

MyObject
SomeTool

Config

WhatEver

uses

Understand and Use Software Metrics 27 / 38

Object Oriented Systems

MyObject
SomeTool

Config

WhatEver

uses

+do(Foo)

Foo

accepts

Understand and Use Software Metrics 27 / 38

Object Oriented Systems

MyObject
SomeTool

Config

WhatEver

uses

+do(Foo)

Foo

accepts

Result creates

Understand and Use Software Metrics 27 / 38

Object Oriented Systems

MyObject
SomeTool

Config

WhatEver

uses

+do(Foo)

Foo

accepts

Result creates

Exception

throws

Understand and Use Software Metrics 27 / 38

Object Oriented Systems

MyObject
SomeTool

Config

WhatEver

uses

+do(Foo)

Foo

accepts

Result creates

Exception

throws

Understand and Use Software Metrics 27 / 38

Coupling

I Excessive coupling is one of the key problems
I Dependencies between artifacts are established by:

I Object instantiations
I Static method calls
I Method parameters
I Thrown and catched exceptions

I (High) Efferent Coupling CE (outgoing dependencies)
I Artifact relies on a lot of code
I Artifact tends to be unstable
I Also called “Coupling Between Objects” (CBO)

I (High) Afferent Coupling CA (incoming dependencies)
I A lot of code relies on artifact
I Artifact should be really stable

Understand and Use Software Metrics 28 / 38

Coupling

I Excessive coupling is one of the key problems
I Dependencies between artifacts are established by:

I Object instantiations
I Static method calls
I Method parameters
I Thrown and catched exceptions

I (High) Efferent Coupling CE (outgoing dependencies)
I Artifact relies on a lot of code
I Artifact tends to be unstable
I Also called “Coupling Between Objects” (CBO)

I (High) Afferent Coupling CA (incoming dependencies)
I A lot of code relies on artifact
I Artifact should be really stable

Understand and Use Software Metrics 28 / 38

Coupling

I Excessive coupling is one of the key problems
I Dependencies between artifacts are established by:

I Object instantiations
I Static method calls
I Method parameters
I Thrown and catched exceptions

I (High) Efferent Coupling CE (outgoing dependencies)
I Artifact relies on a lot of code
I Artifact tends to be unstable
I Also called “Coupling Between Objects” (CBO)

I (High) Afferent Coupling CA (incoming dependencies)
I A lot of code relies on artifact
I Artifact should be really stable

Understand and Use Software Metrics 28 / 38

Coupling

I Excessive coupling is one of the key problems
I Dependencies between artifacts are established by:

I Object instantiations
I Static method calls
I Method parameters
I Thrown and catched exceptions

I (High) Efferent Coupling CE (outgoing dependencies)
I Artifact relies on a lot of code
I Artifact tends to be unstable
I Also called “Coupling Between Objects” (CBO)

I (High) Afferent Coupling CA (incoming dependencies)
I A lot of code relies on artifact
I Artifact should be really stable

Understand and Use Software Metrics 28 / 38

Coupling

I Excessive coupling is one of the key problems
I Dependencies between artifacts are established by:

I Object instantiations
I Static method calls
I Method parameters
I Thrown and catched exceptions

I (High) Efferent Coupling CE (outgoing dependencies)
I Artifact relies on a lot of code
I Artifact tends to be unstable
I Also called “Coupling Between Objects” (CBO)

I (High) Afferent Coupling CA (incoming dependencies)
I A lot of code relies on artifact
I Artifact should be really stable

Understand and Use Software Metrics 28 / 38

Instability vs. Abstractness

Instability:

I =
CE

CE + CA

I CE : Efferent Coupling
(outgoing)

I CA : Afferent Coupling
(incoming)

Abstractness:

A =
Abstracts

Concretes + Abstracts

I Abstracts: Abstract
sub-artificats

I Concretes: Concrete
sub-artificats

I We have a 100% concrete component, what instability can we
expect here?

I What instability could we expect for an abstract class or an
interface?

Understand and Use Software Metrics 29 / 38

Instability vs. Abstractness

Instability:

I =
CE

CE + CA

I CE : Efferent Coupling
(outgoing)

I CA : Afferent Coupling
(incoming)

Abstractness:

A =
Abstracts

Concretes + Abstracts

I Abstracts: Abstract
sub-artificats

I Concretes: Concrete
sub-artificats

I We have a 100% concrete component, what instability can we
expect here?

I What instability could we expect for an abstract class or an
interface?

Understand and Use Software Metrics 29 / 38

Instability vs. Abstractness

Instability:

I =
CE

CE + CA

I CE : Efferent Coupling
(outgoing)

I CA : Afferent Coupling
(incoming)

Abstractness:

A =
Abstracts

Concretes + Abstracts

I Abstracts: Abstract
sub-artificats

I Concretes: Concrete
sub-artificats

I We have a 100% concrete component, what instability can we
expect here?

I What instability could we expect for an abstract class or an
interface?

Understand and Use Software Metrics 29 / 38

Instability vs. Abstractness

Instability:

I =
CE

CE + CA

I CE : Efferent Coupling
(outgoing)

I CA : Afferent Coupling
(incoming)

Abstractness:

A =
Abstracts

Concretes + Abstracts

I Abstracts: Abstract
sub-artificats

I Concretes: Concrete
sub-artificats

I We have a 100% concrete component, what instability can we
expect here?

I What instability could we expect for an abstract class or an
interface?

Understand and Use Software Metrics 29 / 38

Abstractness & Instability

0.1 0.2 0.60.50.40.3 0.80.7 1.00.90.0

0.1

0.2

0.6

0.5

0.4

0.3

0.8

0.7

0.0

Abstraction

In
st
ab
ili
ty

Generated by PHP_Depend

1.0

0.9

Understand and Use Software Metrics 30 / 38

Abstractness & Instability

0.1 0.2 0.60.50.40.3 0.80.7 1.00.90.0

0.1

0.2

0.6

0.5

0.4

0.3

0.8

0.7

0.0

Abstraction

In
st
ab
ili
ty

Generated by PHP_Depend

1.0

0.9

PHP\PMD\Rule

PHP\PMDPHP\PMD\Node

PHP\PMD\Renderer

PHP\PMD\Rule\Design

Understand and Use Software Metrics 30 / 38

Abstractness & Instability

0.1 0.2 0.60.50.40.3 0.80.7 1.00.90.0

0.1

0.2

0.6

0.5

0.4

0.3

0.8

0.7

0.0

Abstraction

In
st
ab
ili
ty

Generated by PHP_Depend

1.0

0.9

PHP\PMD\Rule\Design
Total Classes: 13
Abstract Classes: 0
Efferent Coupling: 3
Afferent Coupling: 0

Understand and Use Software Metrics 30 / 38

Abstractness & Instability

0.1 0.2 0.60.50.40.3 0.80.7 1.00.90.0

0.1

0.2

0.6

0.5

0.4

0.3

0.8

0.7

0.0

Abstraction

In
st
ab
ili
ty

Generated by PHP_Depend

1.0

0.9

PHP\PMD\Rule
Total Classes: 11
Abstract Classes: 5
Efferent Coupling: 2
Afferent Coupling: 2

Understand and Use Software Metrics 30 / 38

Abstractness & Instability

0.1 0.2 0.60.50.40.3 0.80.7 1.00.90.0

0.1

0.2

0.6

0.5

0.4

0.3

0.8

0.7

0.0

Abstraction

In
st
ab
ili
ty

Generated by PHP_Depend

1.0

0.9

PHP\PMD
Total Classes: 15
Abstract Classes: 5
Efferent Coupling: 5
Afferent Coupling: 7

Understand and Use Software Metrics 30 / 38

Abstractness & Instability

0.1 0.2 0.60.50.40.3 0.80.7 1.00.90.0

0.1

0.2

0.6

0.5

0.4

0.3

0.8

0.7

0.0

Abstraction

In
st
ab
ili
ty

Generated by PHP_Depend

1.0

0.9

PHP\PMD\Node
Total Classes: 10
Abstract Classes: 3
Efferent Coupling: 2
Afferent Coupling: 4

Understand and Use Software Metrics 30 / 38

Abstractness & Instability

0.1 0.2 0.60.50.40.3 0.80.7 1.00.90.0

0.1

0.2

0.6

0.5

0.4

0.3

0.8

0.7

0.0

Abstraction

In
st
ab
ili
ty

Generated by PHP_Depend

1.0

0.9
PHP\PMD\Renderer
Total Classes: 3
Abstract Classes: 0
Efferent Coupling: 1
Afferent Coupling: 1

Understand and Use Software Metrics 30 / 38

CodeRank

I Googles PageRankTMfor classes!
I Maps software to a graph

I A node (π) for each software artifact
I Package, Class, Method

I An edge (ρ) for each relation
I Inheritance, Call, Parameter, Exceptions

I CodeRank:

CR(πi) =
∑

r

r((1 − d) + d
∑

r

r(CR(πr)/ρr))

Understand and Use Software Metrics 31 / 38

CodeRank

I Googles PageRankTMfor classes!
I Maps software to a graph

I A node (π) for each software artifact
I Package, Class, Method

I An edge (ρ) for each relation
I Inheritance, Call, Parameter, Exceptions

I CodeRank:

CR(πi) =
∑

r

r((1 − d) + d
∑

r

r(CR(πr)/ρr))

Understand and Use Software Metrics 31 / 38

CodeRank

I Googles PageRankTMfor classes!
I Maps software to a graph

I A node (π) for each software artifact
I Package, Class, Method

I An edge (ρ) for each relation
I Inheritance, Call, Parameter, Exceptions

I CodeRank:

CR(πi) =
∑

r

r((1 − d) + d
∑

r

r(CR(πr)/ρr))

Understand and Use Software Metrics 31 / 38

CodeRank

AbstractClass
1,0

BaseClass
1,0

SubClass
1,0

Dependent
1,0 I Iteration: 0

Understand and Use Software Metrics 32 / 38

CodeRank

AbstractClass
1,000

BaseClass
1,425

SubClass
0,575

Dependent
0,150 I Iteration: 1

Understand and Use Software Metrics 32 / 38

CodeRank

AbstractClass
1,361

BaseClass
0,703

SubClass
0,214

Dependent
0,150 I Iteration: 2

Understand and Use Software Metrics 32 / 38

CodeRank

AbstractClass
0,747

BaseClass
0,395

SubClass
0,214

Dependent
0,150 I Iteration: 3

Understand and Use Software Metrics 32 / 38

CodeRank

AbstractClass
0,486

BaseClass
0,395

SubClass
0,214

Dependent
0,150 I Iteration: 4

Understand and Use Software Metrics 32 / 38

CodeRank

AbstractClass
0,486

BaseClass
0,395

SubClass
0,214

Dependent
0,150 I Iteration: 5

Understand and Use Software Metrics 32 / 38

CodeRank

I Incorporates indirect dependencies
I Locates elements with high effect on the whole system
I Reverse CodeRank:

I Shows dependent components

Understand and Use Software Metrics 33 / 38

Combined Metrics

I Important classes to test: CR ∗WMC
I Easy test subjects: CE = 0 (and high CR or WMC)

Understand and Use Software Metrics 34 / 38

Outline

Classic software metrics

Object oriented software metrics

Conclusion

Understand and Use Software Metrics 35 / 38

Metrics are . . .

I . . . no magic, but simple measured values
I . . . useless without limiting values
I . . . scalable – grow with project growth
I . . . reproducible and automatable
I . . . objective – since calculated by software
I . . . highly interpretable – interpretation depends on viewer

Understand and Use Software Metrics 36 / 38

Metrics are . . .

I . . . no magic, but simple measured values
I . . . useless without limiting values
I . . . scalable – grow with project growth
I . . . reproducible and automatable
I . . . objective – since calculated by software
I . . . highly interpretable – interpretation depends on viewer

Understand and Use Software Metrics 36 / 38

Projects used

I PHPLoc:
https://github.com/sebastianbergmann/phploc

I PDepend:
http://pdepend.org/

I PHP Mess Detector (PHPMD):
http://phpmd.org/

I Qafoo Code Review (CRT):
https://github.com/Qafoo/review

Understand and Use Software Metrics 37 / 38

https://github.com/sebastianbergmann/phploc
http://pdepend.org/
http://phpmd.org/
https://github.com/Qafoo/review

Thanks for Listening

Rate this talk: https://joind.in/7867

Stay in touch

I Kore Nordmann
I kore@qafoo.com
I @koredn / @qafoo

Rent a web quality expert:
http://qafoo.com

Understand and Use Software Metrics 38 / 38

https://joind.in/7867
http://qafoo.com

Thanks for Listening

Rate this talk: https://joind.in/7867

Stay in touch

I Kore Nordmann
I kore@qafoo.com
I @koredn / @qafoo

Rent a web quality expert:
http://qafoo.com

Understand and Use Software Metrics 38 / 38

https://joind.in/7867
http://qafoo.com

	Classic software metrics
	Object oriented software metrics
	Conclusion

