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About Me
Jakob Westhof

● PHP Professional since 
2001

● JavaScript Professional 
since 2006

● Trainer and Consultant
● Author of articles and a 

book
● Regular speaker at 

technology conferences
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RegExp

Subject

Match
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PCRE
=

Perl Compatible Regular Expressions



  

PCRE

PCRE
=

Perl Compatible Regular Expressions

● Library that PHP utilizes



  

 

RegExp



  

Basic structure of a RegExp

/foobar/i



  

/foobar/i

● Pattern
● Description of the matching Strings

Basic structure of a RegExp



  

/foobar/i

● Modifier
● Additional Options

Basic structure of a RegExp



  

/foobar/i

● Delimiter
● Enclosure of Pattern
● Divider between Pattern and Modifier

Basic structure of a RegExp



  

(foobar)i

● Delimiter
● PCRE allows arbitrary Brackets 

– ()   []   {}

Basic structure of a RegExp



  

 

Metacharacters



  

Metacharacters

● Certain characters inside a RegExp 
Pattern have got a special meaning

([We]b \s* Te+c.no)



  

Quantifier

● Quantifiers specify Repetitions of the 
previous character or group

(We*b Te+ch?n{1,3}o)



  

Quantifier

● Quantifiers specify Repetitions of the 
previous character or group

● * Any number of occurrences (0 → ∞)
● + One occurrence minimum (1 → ∞)
● ? Not at all or one time (0 → 1)
● {x,y} Between x and y (x → y)

(We*b Te+ch?n{1,3}o)



  

The Dot

● The Dot (.) matches any character
● Everything except newline

(Make a .oint)



  

● Character classes define a Set  of  
arbitrary characters

([abcdef]+)

Character Classes



  

● Ranges can be defined
● One Character Class may contain multiple 

Ranges

([a-cd-f]+)

Character Classes



  

● A Character Class can be negated
● The newline character is part of the negation

([^abcdef]+)

Character Classes



  

Alternatives

● Logical OR

(Open|Source)



  

Alternatives

● Logical OR

(Open|Source)

Open



  

Alternatives

● Logical OR

(Open|Source)

Open ✓



  

Alternatives

● Logical OR

(Open|Source)

Open

Source
✓
✓



  

Alternatives

● Logical OR

(Open|Source)

Open

Source

Open Source

✓
✓



  

Alternatives

● Logical OR

(Open|Source)

Open

Source

Open Source

✓
✓
✓



  

 

Subpattern



  

Subpattern

● Pattern can be divided using parenthesis

((abc)(def))

abcdef



  

Subpattern

● Pattern can be divided using parenthesis

● Subpatterns may be used to extract parts of 
the match

((abc)(def))

abcdef

1:abc    2:def



  

Subpattern Options

● Subpattern may be used to set 
options/modifiers for a certain area of the 
Regular Expression

((?#I am a comment subpattern.))



  

Subpattern Options

● Setting options for a subpattern

● Abstract syntax for any option

(?OptionPattern)



  

Subpattern Options

(((?i)[a-z]+) [a-z]+)

● Setting the case-insensitive modifier using a 
subpattern option



  

Subpattern Options

Jakob westhoff

● Setting the case-insensitive modifier using a 
subpattern option

(((?i)[a-z]+) [a-z]+)



  

Subpattern Options

Jakob westhoff

● Setting the case-insensitive modifier using a 
subpattern option

✓

(((?i)[a-z]+) [a-z]+)



  

Subpattern Options

Jakob westhoff

● Setting the case-insensitive modifier using a 
subpattern option

✓

(((?i)[a-z]+) [a-z]+)

Jakob Westhoff ✘
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Named Subpattern

● Subpatterns may be named

● The P Option is used for naming subpatterns

((?P<firstname>Jakob))



  

Named Subpattern

((?P<firstname>Jakob) (Westhoff))



  

Named Subpattern

((?P<firstname>Jakob) (Westhoff))

Jakob Westhoff



  

Named Subpattern

● Access to extraction using the subpatterns 
name is possible

((?P<firstname>Jakob) (Westhoff))

Jakob Westhoff

firstname:Jakob



  

Non grouping Subpattern

● Subpattern can be used without being a 
group

● The question mark followed by a colon (?:) 
creates a non grouping subpattern

((?:Jakob))



  

Non grouping Subpattern

● Why are non grouping subpatterns 
useful?



  

Non grouping Subpattern

● Why are non grouping subpatterns 
useful?

((?:Jakob|Veronika) Westhoff)



  

Non grouping Subpattern

● Why are non grouping subpatterns 
useful?

((?:Jakob|Veronika) Westhoff)

Jakob Westhoff

Veronika Westhoff ✓
✓



  

Non grouping Subpattern

● Why are non grouping subpatterns 
useful?

● No clobbering of extracted matches

((?:Jakob|Veronika) Westhoff)

Jakob Westhoff

Veronika Westhoff ✓
✓
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Anchors

● Anchors are part of the family of 
Assertions in Regular Expressions

● They are used to assert certain 
conditions without afecting the match

● Anchors: Beginning and end of the 
Subject



  

Anchors

● ^ Beginning of the Subject
● $ End of the Subject



  

(Apple)i

Anchors

● ^ Beginning of the Subject
● $ End of the Subject



  

(Apple)i

Apple

Anchors

● ^ Beginning of the Subject
● $ End of the Subject



  

(Apple)i

Apple ✓

Anchors

● ^ Beginning of the Subject
● $ End of the Subject



  

(Apple)i

Apple ✓
Pineapple

Anchors

● ^ Beginning of the Subject
● $ End of the Subject



  

(Apple)i

Apple ✓
Pineapple

Anchors

✓

● ^ Beginning of the Subject
● $ End of the Subject



  

(^Apple)i

Apple ✓
Pineapple ✘

Anchors

● ^ Beginning of the Subject
● $ End of the Subject



  

(Apple$)i

Anchors

● ^ Beginning of the Subject
● $ End of the Subject



  

(Apple$)i

Apple ✓

Anchors

● ^ Beginning of the Subject
● $ End of the Subject



  

(Apple$)i

Apple ✓
Apple-pie

Anchors

● ^ Beginning of the Subject
● $ End of the Subject



  

(Apple$)i

Apple ✓
Apple-pie ✘

Anchors

● ^ Beginning of the Subject
● $ End of the Subject



  

(^Apple$)i

Anchors

● ^ Beginning of the Subject
● $ End of the Subject



  

(^Apple$)i

Apple ✓

Anchors

● ^ Beginning of the Subject
● $ End of the Subject



  

(^Apple$)i

Apple ✓
Apple-pie ✘

Anchors

Pineapple ✘

● ^ Beginning of the Subject
● $ End of the Subject



  

Other Assertions

● Custom assertions can be created
● The ?= Option is used for this



  

Other Assertions

● Custom assertions can be created
● The ?= Option is used for this

([a-z]+(?=,))i



  

Other Assertions

● Custom assertions can be created
● The ?= Option is used for this

([a-z]+(?=,))i

✓One,Two,Three



  

Other Assertions

● Custom assertions can be created
● The ?= Option is used for this

● Useful in combination with preg_match_all

([a-z]+(?=,))i

✓One,Two,Three



  

Other Assertions

● Custom assertions can be created
● The ?= Option is used for this

● Alternatives may be used

([a-z]+(?=,|;))i

✓One,Two;Three



  

Other Assertions

● Negative Assertions are possible
● The ?! Option is used for this



  

Other Assertions

● Negative Assertions are possible
● The ?! Option is used for this

(One(?!,Two))i



  

Other Assertions

● Negative Assertions are possible
● The ?! Option is used for this

(One(?!,Two))i

One,Two,Three ✘



  

Other Assertions

● Negative Assertions are possible
● The ?! Option is used for this

(One(?!,Two))i

✓
One,Two,Three ✘

One,Three



  

Other Assertions

● Assert on something before the cursor

((?=One,)Two)i



  

Other Assertions

● Assert on something before the cursor

((?=One,)Two)i

Three,Two,One



  

Other Assertions

● Assert on something before the cursor

((?=One,)Two)i

Three,Two,One ✘



  

Other Assertions

● Assert on something before the cursor

((?=One,)Two)i

Three,Two,One ✘
One,Two,Three



  

Other Assertions

● Assert on something before the cursor

((?=One,)Two)i

Three,Two,One ✘
One,Two,Three ✘



  

Other Assertions

● Assert on something before the cursor

((?=One,)Two)i

Three,Two,One

Why?

✘
One,Two,Three ✘



  

Other Assertions

● Assert on something before the cursor

((?=One,)Two)i

One,Two,Three



  

Other Assertions

● Assert on something before the cursor

((?=One,)Two)i

One,Two,Three



  

Other Assertions

● Assert on something before the cursor

((?=One,)Two)i

One,Two,Three



  

Other Assertions

● Assert on something before the cursor

((?=One,)Two)i

One,Two,Three

One != Two



  

Other Assertions

● Assert on something before the cursor

((?=One,)Two)i

One,Two,Three ✘

One != Two



  

Other Assertions

● Look-Behind Assertions to the rescue
● Option: ?<=

((?<=One,)Two)i

One,Two,Three
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● Look-Behind Assertions to the rescue
● Option: ?<=

((?<=One,)Two)i

One,Two,Three



  

Other Assertions

● Look-Behind Assertions to the rescue
● Option: ?<=

((?<=One,)Two)i

One,Two,Three



  

Other Assertions

● Look-Behind Assertions to the rescue
● Option: ?<=

((?<=One,)Two)i

One,Two,Three ✓



  

Other Assertions

● Negative Look-Behind is possible
● Option: ?<!

((?<!One,)Two)i



  

Other Assertions

● Negative Look-Behind is possible
● Option: ?<!

((?<!One,)Two)i

One,Two,Three ✘



  

Other Assertions

● Negative Look-Behind is possible
● Option: ?<!

((?<!One,)Two)i

One,Two,Three

✓Three,Two,One

✘
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Unicode
● UTF-8 Mode

● Modifier u

● Valid UTF-8 needed in pattern and subject

(^abcdef$)u



  

Unicode

● UTF-8 Encoding
● Bytes for all ASCII codes (0-127) identical
● 2-4 Bytes used for further characters 

(Codepoints)

● Codepoints
● Each Codepoint is considered to be one 

character



  

Unicode

 

Русский



  

Unicode

 (\x{0420})u

Русский



  

Unicode

 

● \x Specify certain Unicode codepoints

(\x{0420})u

Русский



  

Unicode

 

● \x Specify certain Unicode codepoints
● Works within character classes

([\x{0400}-\x{A697}]+)u

Русский



  

Unicode

(\p{Cyrillic}+)u

Русский

 

● \x Specify certain Unicode codepoints
● Works within character classes
● Predefined unicode character classes exist



  

Unicode

(\p{Cyrillic}+)u

Русский 한국어

 

● \x Specify certain Unicode codepoints
● Works within character classes
● Predefined unicode character classes exist



  

Unicode

(\p{L}+)u

Русский 한국어

 

● \x Specify certain Unicode codepoints
● Works within character classes
● Predefined unicode character classes exist
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Performance

● The PCRE engines utilizes backtracking



  

Performance

([a-z0-9]+\d)

abc42def

● The PCRE engines utilizes backtracking
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● The PCRE engines utilizes backtracking



  

Performance
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Performance

([a-z0-9]+\d)
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Performance

([a-z0-9]+\d)
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Performance

([a-z0-9]+\d)

abc42def

● The PCRE engines utilizes backtracking



  

Performance

([a-z0-9]+\d)

abc42def

● The PCRE engines utilizes backtracking



  

Performance

([a-z0-9]+\d)

abc42def

● The PCRE engines utilizes backtracking



  

Performance

([a-z0-9]+\d)

abc42def

● The PCRE engines utilizes backtracking



  

Performance

([a-z0-9]+\d)

abc42def

● The PCRE engines utilizes backtracking



  

Performance

([a-z0-9]+\d)

abc42def

● The PCRE engines utilizes backtracking

✓



  

Performance

● Because of non disjunct character sets 
this match is quite slow

([a-z0-9]+\d)



  

Performance

● Because of non disjunct character sets 
this match is quite slow

([a-z0-9]+\d)

Can it be optimized?



  

Greediness

● Usually the PCRE engine is greedy

● It tries to consume as much characters as 
possible to create a match



  

Greediness

● Advise the engine to be ungreedy
● Modifier U

([a-z0-9]+\d)U



  

Greediness

([a-z0-9]+\d)U

([a-z0-9]+?\d)

● Advise the engine to be ungreedy
● Modifier U

● Question mark (?) after a quantifier



  

Greediness

● Impact on the previous example

([a-z0-9]+\d)U

abc42def



  

Greediness

([a-z0-9]+\d)U

abc42def

● Impact on the previous example



  

Greediness

([a-z0-9]+\d)U

abc42def

● Impact on the previous example



  

Greediness

([a-z0-9]+\d)U

abc42def

● Impact on the previous example



  

Greediness

([a-z0-9]+\d)U

abc42def

● Impact on the previous example



  

Greediness

([a-z0-9]+\d)U

abc42def

● Impact on the previous example



  

Greediness

([a-z0-9]+\d)U

abc42def

● Impact on the previous example



  

Greediness

([a-z0-9]+\d)U

abc42def

● Impact on the previous example

✓



  

Greediness

([a-z0-9]+\d)U

abc42def

● Impact on the previous example

● May produce diferent results than a greedy 
match

✓



  

Greediness

● Ungreedy matching is not always faster 
than greedy matching

● In most situations it is even slower

● Can produce diferent matches than 
greedy matching



  

Atomic Groups

● Another possibility of controlling 
backtracking are Atomic Groups

● Explicitly disable backtracking for a 
certain area of the Regular Expression



  

Atomic Groups

 

([a-z]+42)

abcd21



  

Atomic Groups

 

([a-z]+42)

abcd21



  

Atomic Groups

 

([a-z]+42)

abcd21



  

Atomic Groups

 

([a-z]+42)

abcd21



  

Atomic Groups

 

([a-z]+42)

abcd21



  

Atomic Groups

 

([a-z]+42)

abcd21



  

Atomic Groups

 

([a-z]+42)

abcd21



  

Atomic Groups

 

([a-z]+42)

abcd21



  

Atomic Groups

 

([a-z]+42)

abcd21



  

Atomic Groups

 

([a-z]+42)

abcd21



  

Atomic Groups

 

([a-z]+42)

abcd21 ✘



  

Atomic Groups

● Atomic Groups are enabled using a 
Subpattern option

 

((?>[a-z]+)42)

abcd21



  

Atomic Groups

((?>[a-z]+)42)

abcd21



  

Atomic Groups

((?>[a-z]+)42)

abcd21



  

Atomic Groups

((?>[a-z]+)42)

abcd21



  

Atomic Groups

((?>[a-z]+)42)

abcd21



  

Atomic Groups

((?>[a-z]+)42)

abcd21



  

Atomic Groups

● No backtracking allowed for this 
subpattern, therefore immediate abort

((?>[a-z]+)42)

abcd21 ✘



  

Atomic Groups

● Backtracking may be prohibited on a per 
quantifier basis as well
● + Possessive Quantifier

([a-z]++42)



  

Performance

● PCRE has a default limit of backtracking 
steps to use

● Can be configured while compiling the 
library (Default: 1,000,000)

● Can be configured in certain runtime 
environments



  

 



  

Thanks for your attention.

Jakob Westhoff
Mail:    jakob@qafoo.com
Twitter: @jakobwesthoff

mailto:jakob@qafoo.com
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