

Black Magic with
Regular Expressions

Zend Webinar
20. November 2012

Jakob Westhoff

About Me

Jakob Westhof

About Me

Jakob Westhof

About Me
Jakob Westhof

● PHP Professional since
2001

● JavaScript Professional
since 2006

● Trainer and Consultant
● Author of articles and a

book
● Regular speaker at

technology conferences

Terminology

Terminology

RegExp

Subject

Match

Engine
Flavors

PCRE

PCRE
=

Perl Compatible Regular Expressions

PCRE

PCRE
=

Perl Compatible Regular Expressions

● Library that PHP utilizes

RegExp

Basic structure of a RegExp

/foobar/i

/foobar/i

● Pattern
● Description of the matching Strings

Basic structure of a RegExp

/foobar/i

● Modifier
● Additional Options

Basic structure of a RegExp

/foobar/i

● Delimiter
● Enclosure of Pattern
● Divider between Pattern and Modifier

Basic structure of a RegExp

(foobar)i

● Delimiter
● PCRE allows arbitrary Brackets

– () [] {}

Basic structure of a RegExp

Metacharacters

Metacharacters

● Certain characters inside a RegExp
Pattern have got a special meaning

([We]b \s* Te+c.no)

Quantifier

● Quantifiers specify Repetitions of the
previous character or group

(We*b Te+ch?n{1,3}o)

Quantifier

● Quantifiers specify Repetitions of the
previous character or group

● * Any number of occurrences (0 → ∞)
● + One occurrence minimum (1 → ∞)
● ? Not at all or one time (0 → 1)
● {x,y} Between x and y (x → y)

(We*b Te+ch?n{1,3}o)

The Dot

● The Dot (.) matches any character
● Everything except newline

(Make a .oint)

● Character classes define a Set of
arbitrary characters

([abcdef]+)

Character Classes

● Ranges can be defined
● One Character Class may contain multiple

Ranges

([a-cd-f]+)

Character Classes

● A Character Class can be negated
● The newline character is part of the negation

([^abcdef]+)

Character Classes

Alternatives

● Logical OR

(Open|Source)

Alternatives

● Logical OR

(Open|Source)

Open

Alternatives

● Logical OR

(Open|Source)

Open ✓

Alternatives

● Logical OR

(Open|Source)

Open

Source
✓
✓

Alternatives

● Logical OR

(Open|Source)

Open

Source

Open Source

✓
✓

Alternatives

● Logical OR

(Open|Source)

Open

Source

Open Source

✓
✓
✓

Subpattern

Subpattern

● Pattern can be divided using parenthesis

((abc)(def))

abcdef

Subpattern

● Pattern can be divided using parenthesis

● Subpatterns may be used to extract parts of
the match

((abc)(def))

abcdef

1:abc 2:def

Subpattern Options

● Subpattern may be used to set
options/modifiers for a certain area of the
Regular Expression

((?#I am a comment subpattern.))

Subpattern Options

● Setting options for a subpattern

● Abstract syntax for any option

(?OptionPattern)

Subpattern Options

(((?i)[a-z]+) [a-z]+)

● Setting the case-insensitive modifier using a
subpattern option

Subpattern Options

Jakob westhoff

● Setting the case-insensitive modifier using a
subpattern option

(((?i)[a-z]+) [a-z]+)

Subpattern Options

Jakob westhoff

● Setting the case-insensitive modifier using a
subpattern option

✓

(((?i)[a-z]+) [a-z]+)

Subpattern Options

Jakob westhoff

● Setting the case-insensitive modifier using a
subpattern option

✓

(((?i)[a-z]+) [a-z]+)

Jakob Westhoff ✘

Named
Subpattern

Named Subpattern

● Subpatterns may be named

● The P Option is used for naming subpatterns

((?P<firstname>Jakob))

Named Subpattern

((?P<firstname>Jakob) (Westhoff))

Named Subpattern

((?P<firstname>Jakob) (Westhoff))

Jakob Westhoff

Named Subpattern

● Access to extraction using the subpatterns
name is possible

((?P<firstname>Jakob) (Westhoff))

Jakob Westhoff

firstname:Jakob

Non grouping Subpattern

● Subpattern can be used without being a
group

● The question mark followed by a colon (?:)
creates a non grouping subpattern

((?:Jakob))

Non grouping Subpattern

● Why are non grouping subpatterns
useful?

Non grouping Subpattern

● Why are non grouping subpatterns
useful?

((?:Jakob|Veronika) Westhoff)

Non grouping Subpattern

● Why are non grouping subpatterns
useful?

((?:Jakob|Veronika) Westhoff)

Jakob Westhoff

Veronika Westhoff ✓
✓

Non grouping Subpattern

● Why are non grouping subpatterns
useful?

● No clobbering of extracted matches

((?:Jakob|Veronika) Westhoff)

Jakob Westhoff

Veronika Westhoff ✓
✓

Assertions

Anchors

● Anchors are part of the family of
Assertions in Regular Expressions

● They are used to assert certain
conditions without afecting the match

● Anchors: Beginning and end of the
Subject

Anchors

● ^ Beginning of the Subject
● $ End of the Subject

(Apple)i

Anchors

● ^ Beginning of the Subject
● $ End of the Subject

(Apple)i

Apple

Anchors

● ^ Beginning of the Subject
● $ End of the Subject

(Apple)i

Apple ✓

Anchors

● ^ Beginning of the Subject
● $ End of the Subject

(Apple)i

Apple ✓
Pineapple

Anchors

● ^ Beginning of the Subject
● $ End of the Subject

(Apple)i

Apple ✓
Pineapple

Anchors

✓

● ^ Beginning of the Subject
● $ End of the Subject

(^Apple)i

Apple ✓
Pineapple ✘

Anchors

● ^ Beginning of the Subject
● $ End of the Subject

(Apple$)i

Anchors

● ^ Beginning of the Subject
● $ End of the Subject

(Apple$)i

Apple ✓

Anchors

● ^ Beginning of the Subject
● $ End of the Subject

(Apple$)i

Apple ✓
Apple-pie

Anchors

● ^ Beginning of the Subject
● $ End of the Subject

(Apple$)i

Apple ✓
Apple-pie ✘

Anchors

● ^ Beginning of the Subject
● $ End of the Subject

(^Apple$)i

Anchors

● ^ Beginning of the Subject
● $ End of the Subject

(^Apple$)i

Apple ✓

Anchors

● ^ Beginning of the Subject
● $ End of the Subject

(^Apple$)i

Apple ✓
Apple-pie ✘

Anchors

Pineapple ✘

● ^ Beginning of the Subject
● $ End of the Subject

Other Assertions

● Custom assertions can be created
● The ?= Option is used for this

Other Assertions

● Custom assertions can be created
● The ?= Option is used for this

([a-z]+(?=,))i

Other Assertions

● Custom assertions can be created
● The ?= Option is used for this

([a-z]+(?=,))i

✓One,Two,Three

Other Assertions

● Custom assertions can be created
● The ?= Option is used for this

● Useful in combination with preg_match_all

([a-z]+(?=,))i

✓One,Two,Three

Other Assertions

● Custom assertions can be created
● The ?= Option is used for this

● Alternatives may be used

([a-z]+(?=,|;))i

✓One,Two;Three

Other Assertions

● Negative Assertions are possible
● The ?! Option is used for this

Other Assertions

● Negative Assertions are possible
● The ?! Option is used for this

(One(?!,Two))i

Other Assertions

● Negative Assertions are possible
● The ?! Option is used for this

(One(?!,Two))i

One,Two,Three ✘

Other Assertions

● Negative Assertions are possible
● The ?! Option is used for this

(One(?!,Two))i

✓
One,Two,Three ✘

One,Three

Other Assertions

● Assert on something before the cursor

((?=One,)Two)i

Other Assertions

● Assert on something before the cursor

((?=One,)Two)i

Three,Two,One

Other Assertions

● Assert on something before the cursor

((?=One,)Two)i

Three,Two,One ✘

Other Assertions

● Assert on something before the cursor

((?=One,)Two)i

Three,Two,One ✘
One,Two,Three

Other Assertions

● Assert on something before the cursor

((?=One,)Two)i

Three,Two,One ✘
One,Two,Three ✘

Other Assertions

● Assert on something before the cursor

((?=One,)Two)i

Three,Two,One

Why?

✘
One,Two,Three ✘

Other Assertions

● Assert on something before the cursor

((?=One,)Two)i

One,Two,Three

Other Assertions

● Assert on something before the cursor

((?=One,)Two)i

One,Two,Three

Other Assertions

● Assert on something before the cursor

((?=One,)Two)i

One,Two,Three

Other Assertions

● Assert on something before the cursor

((?=One,)Two)i

One,Two,Three

One != Two

Other Assertions

● Assert on something before the cursor

((?=One,)Two)i

One,Two,Three ✘

One != Two

Other Assertions

● Look-Behind Assertions to the rescue
● Option: ?<=

((?<=One,)Two)i

One,Two,Three

Other Assertions

● Look-Behind Assertions to the rescue
● Option: ?<=

((?<=One,)Two)i

One,Two,Three

Other Assertions

● Look-Behind Assertions to the rescue
● Option: ?<=

((?<=One,)Two)i

One,Two,Three

Other Assertions

● Look-Behind Assertions to the rescue
● Option: ?<=

((?<=One,)Two)i

One,Two,Three

Other Assertions

● Look-Behind Assertions to the rescue
● Option: ?<=

((?<=One,)Two)i

One,Two,Three

Other Assertions

● Look-Behind Assertions to the rescue
● Option: ?<=

((?<=One,)Two)i

One,Two,Three ✓

Other Assertions

● Negative Look-Behind is possible
● Option: ?<!

((?<!One,)Two)i

Other Assertions

● Negative Look-Behind is possible
● Option: ?<!

((?<!One,)Two)i

One,Two,Three ✘

Other Assertions

● Negative Look-Behind is possible
● Option: ?<!

((?<!One,)Two)i

One,Two,Three

✓Three,Two,One

✘

Unicode

Unicode
● UTF-8 Mode

● Modifier u

● Valid UTF-8 needed in pattern and subject

(^abcdef$)u

Unicode

● UTF-8 Encoding
● Bytes for all ASCII codes (0-127) identical
● 2-4 Bytes used for further characters

(Codepoints)

● Codepoints
● Each Codepoint is considered to be one

character

Unicode

Русский

Unicode

 (\x{0420})u

Русский

Unicode

● \x Specify certain Unicode codepoints

(\x{0420})u

Русский

Unicode

● \x Specify certain Unicode codepoints
● Works within character classes

([\x{0400}-\x{A697}]+)u

Русский

Unicode

(\p{Cyrillic}+)u

Русский

● \x Specify certain Unicode codepoints
● Works within character classes
● Predefined unicode character classes exist

Unicode

(\p{Cyrillic}+)u

Русский 한국어

● \x Specify certain Unicode codepoints
● Works within character classes
● Predefined unicode character classes exist

Unicode

(\p{L}+)u

Русский 한국어

● \x Specify certain Unicode codepoints
● Works within character classes
● Predefined unicode character classes exist

Performance

Performance

● The PCRE engines utilizes backtracking

Performance

([a-z0-9]+\d)

abc42def

● The PCRE engines utilizes backtracking

Performance

([a-z0-9]+\d)

abc42def

● The PCRE engines utilizes backtracking

Performance

([a-z0-9]+\d)

abc42def

● The PCRE engines utilizes backtracking

Performance

([a-z0-9]+\d)

abc42def

● The PCRE engines utilizes backtracking

Performance

([a-z0-9]+\d)

abc42def

● The PCRE engines utilizes backtracking

Performance

([a-z0-9]+\d)

abc42def

● The PCRE engines utilizes backtracking

Performance

([a-z0-9]+\d)

abc42def

● The PCRE engines utilizes backtracking

Performance

([a-z0-9]+\d)

abc42def

● The PCRE engines utilizes backtracking

Performance

([a-z0-9]+\d)

abc42def

● The PCRE engines utilizes backtracking

Performance

([a-z0-9]+\d)

abc42def

● The PCRE engines utilizes backtracking

Performance

([a-z0-9]+\d)

abc42def

● The PCRE engines utilizes backtracking

Performance

([a-z0-9]+\d)

abc42def

● The PCRE engines utilizes backtracking

Performance

([a-z0-9]+\d)

abc42def

● The PCRE engines utilizes backtracking

Performance

([a-z0-9]+\d)

abc42def

● The PCRE engines utilizes backtracking

✓

Performance

● Because of non disjunct character sets
this match is quite slow

([a-z0-9]+\d)

Performance

● Because of non disjunct character sets
this match is quite slow

([a-z0-9]+\d)

Can it be optimized?

Greediness

● Usually the PCRE engine is greedy

● It tries to consume as much characters as
possible to create a match

Greediness

● Advise the engine to be ungreedy
● Modifier U

([a-z0-9]+\d)U

Greediness

([a-z0-9]+\d)U

([a-z0-9]+?\d)

● Advise the engine to be ungreedy
● Modifier U

● Question mark (?) after a quantifier

Greediness

● Impact on the previous example

([a-z0-9]+\d)U

abc42def

Greediness

([a-z0-9]+\d)U

abc42def

● Impact on the previous example

Greediness

([a-z0-9]+\d)U

abc42def

● Impact on the previous example

Greediness

([a-z0-9]+\d)U

abc42def

● Impact on the previous example

Greediness

([a-z0-9]+\d)U

abc42def

● Impact on the previous example

Greediness

([a-z0-9]+\d)U

abc42def

● Impact on the previous example

Greediness

([a-z0-9]+\d)U

abc42def

● Impact on the previous example

Greediness

([a-z0-9]+\d)U

abc42def

● Impact on the previous example

✓

Greediness

([a-z0-9]+\d)U

abc42def

● Impact on the previous example

● May produce diferent results than a greedy
match

✓

Greediness

● Ungreedy matching is not always faster
than greedy matching

● In most situations it is even slower

● Can produce diferent matches than
greedy matching

Atomic Groups

● Another possibility of controlling
backtracking are Atomic Groups

● Explicitly disable backtracking for a
certain area of the Regular Expression

Atomic Groups

([a-z]+42)

abcd21

Atomic Groups

([a-z]+42)

abcd21

Atomic Groups

([a-z]+42)

abcd21

Atomic Groups

([a-z]+42)

abcd21

Atomic Groups

([a-z]+42)

abcd21

Atomic Groups

([a-z]+42)

abcd21

Atomic Groups

([a-z]+42)

abcd21

Atomic Groups

([a-z]+42)

abcd21

Atomic Groups

([a-z]+42)

abcd21

Atomic Groups

([a-z]+42)

abcd21

Atomic Groups

([a-z]+42)

abcd21 ✘

Atomic Groups

● Atomic Groups are enabled using a
Subpattern option

((?>[a-z]+)42)

abcd21

Atomic Groups

((?>[a-z]+)42)

abcd21

Atomic Groups

((?>[a-z]+)42)

abcd21

Atomic Groups

((?>[a-z]+)42)

abcd21

Atomic Groups

((?>[a-z]+)42)

abcd21

Atomic Groups

((?>[a-z]+)42)

abcd21

Atomic Groups

● No backtracking allowed for this
subpattern, therefore immediate abort

((?>[a-z]+)42)

abcd21 ✘

Atomic Groups

● Backtracking may be prohibited on a per
quantifier basis as well
● + Possessive Quantifier

([a-z]++42)

Performance

● PCRE has a default limit of backtracking
steps to use

● Can be configured while compiling the
library (Default: 1,000,000)

● Can be configured in certain runtime
environments

Thanks for your attention.

Jakob Westhoff
Mail: jakob@qafoo.com
Twitter: @jakobwesthoff

mailto:jakob@qafoo.com

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Folie 39
	Folie 40
	Folie 41
	Folie 42
	Folie 43
	Folie 44
	Folie 45
	Folie 46
	Folie 47
	Folie 48
	Folie 49
	Folie 50
	Folie 51
	Folie 52
	Folie 53
	Folie 54
	Folie 55
	Folie 56
	Folie 57
	Folie 58
	Folie 59
	Folie 60
	Folie 61
	Folie 62
	Folie 63
	Folie 64
	Folie 65
	Folie 66
	Folie 67
	Folie 68
	Folie 69
	Folie 70
	Folie 71
	Folie 72
	Folie 73
	Folie 74
	Folie 75
	Folie 76
	Folie 77
	Folie 78
	Folie 79
	Folie 80
	Folie 81
	Folie 82
	Folie 83
	Folie 84
	Folie 85
	Folie 86
	Folie 87
	Folie 88
	Folie 89
	Folie 90
	Folie 91
	Folie 92
	Folie 93
	Folie 94
	Folie 95
	Folie 96
	Folie 97
	Folie 98
	Folie 99
	Folie 100
	Folie 101
	Folie 102
	Folie 103
	Folie 104
	Folie 105
	Folie 106
	Folie 107
	Folie 108
	Folie 109
	Folie 110
	Folie 111
	Folie 112
	Folie 113
	Folie 114
	Folie 115
	Folie 116
	Folie 117
	Folie 118
	Folie 119
	Folie 120
	Folie 121
	Folie 122
	Folie 123
	Folie 124
	Folie 125
	Folie 126
	Folie 127
	Folie 128
	Folie 129
	Folie 130
	Folie 131
	Folie 132
	Folie 133
	Folie 134
	Folie 135
	Folie 136
	Folie 137
	Folie 138
	Folie 139
	Folie 140
	Folie 141
	Folie 142
	Folie 143
	Folie 144
	Folie 145
	Folie 146
	Folie 147
	Folie 148
	Folie 149
	Folie 150
	Folie 151
	Folie 152
	Folie 153
	Folie 154
	Folie 155
	Folie 156
	Folie 157

