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Goals of this session

I Special role of functions in JavaScript

I The concept of closures

I Utilize those features
I Closure/Function Design Patterns
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What comes next?

Functions
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First level citizens

I Functions are first level citizens in JavaScript
I Can be passed like any other variable
I Can be created inline
I Can be defined at any nesting level
I Can be assigned like any other variable
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First level citizens

I Can be passed like any other variable

1 function foo ( ca l l back ) { }
2

3 function bar ( ) { }
4

5 foo ( bar ) ;
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First level citizens

I Can be created inline

1 function foo ( ca l l back ) { }
2

3 foo ( function ( ) {
4 / / . .
5 } ) ;
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First level citizens

I Can be defined at any nesting level

1 function foo ( ) {
2 function bar ( ) {
3 function baz ( ) {
4 / / . . .
5 }

6 }

7 }
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First level citizens

I Can be assigned like any other variable

1 function baz ( ca l l back ) { }
2

3 var foo = function ( ) { }
4 var bar = foo ;
5 baz ( bar ) ;
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What comes next?

Scope Basics
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JavaScript Scoping Basics

I Scoping in JavaScript isn’t trivial
I To understand closures only a part of JavaScripts scoping

rules are essential
I Especially Scope Isolation and the Scope Chain
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Scope Isolation

I JavaScript does only provide scope isolation on a function
level

I In contrast to block level isolation in other languages (C, C++,
Java, ...)

1 var i = 100;
2

3 ( function ( ) {
4 f o r ( var i =1; i <=3; ++ i ) {
5 a l e r t ( i ) ; / / 1 , 2 , 3
6 }

7 } ) ( ) ;
8

9 a l e r t ( i ) / / 100
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Scope Chain

I JavaScript Engines chain scopes during their creation
I Inner scopes are always allowed to access outer scopes

variables
I Outer scopes can not access inner scopes variables
I Outer scope access is done by reference not by value
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Scope Chain

1 var a = 42;
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Scope Chain

1 var a = 42;

a = 42

Closure Design Patterns 14 / 54



Scope Chain

1 var a = 42;
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Scope Chain

1 var a = 42;
2

3 function somefunc ( ) {
4 var b = 23;
5 }

null

a = 42 b = 23
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Scope Chain

1 var a = 42;
2

3 function somefunc ( ) {
4 var b = 23;
5

6 function other func ( ) {
7 var c = ” foo ” ;
8 }

9 }

null

a = 42 b = 23 c = "foo"
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Scope Chain

1 var a = 42;
2

3 function somefunc ( ) {
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Scope Chain

1 var a = 42;
2

3 function somefunc ( ) {
4 var b = 23;
5

6 function other func ( ) {
7 var c = ” foo ” ;
8 var a = ” bar ” ;
9 a = ” baz ” ;

10 }

11 }

null

a = 42 b = 23 c = "foo"
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Scope Chain

1 var a = 42;
2

3 function somefunc ( ) {
4 var b = 23;
5

6 function other func ( ) {
7 var c = ” foo ” ;
8 var a = ” bar ” ;
9 a = ” baz ” ;

10 b = 5;
11 }

12 }

null

a = 42 b = 5 c = "foo"
a = "baz"
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Scope Chain

1 var a = 42;
2

3 function somefunc ( ) {
4 var b = 23;
5

6 function other func ( ) {
7 var c = ” foo ” ;
8 a = ” baz ” ;
9 }

10 }

null

a = "baz" b = 23 c = "foo"
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What comes next?

Closures
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Closures in computer science

I Closures are functions

I They are closed over their free variables
I Variables from an outside scope can be accessed (upvalues)
I Still accessible if outer scope ceases to exist

I Upvalues are passed by reference not by value
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Closures in JavaScript

1 var gree t i ng = ” He l lo World ! ” ;
2

3 function showGreetings ( ) {
4 a l e r t ( g ree t i ng ) ;
5 }

6

7 showGreetings ( ) ;
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Closures in JavaScript
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Closures in JavaScript

1 function createAlertMessage ( message ) {
2 var showMessage = function ( ) {
3 a l e r t ( message ) ;
4 }

5

6 return showMessage ;
7 }
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6 return showMessage ;
7 }

1 var greetTheWorld = createAlertMessage (
2 ” He l lo World ! ”
3 ) ;
4

5 greetTheWorld ( ) ;

Closure Design Patterns 18 / 54



Closures in JavaScript
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Closures in JavaScript

1 function createAlertMessage ( message ) {
2 var showMessage = function ( ) {
3 a l e r t ( message ) ;
4 }

5

6 return showMessage ;
7 }

1 var greetTheWorld = createAlertMessage (
2 ” He l lo World ! ”
3 ) ;
4 var greetTheAudience = createAlertMessage (
5 ” He l lo Audience . You are great ! ”
6 )
7

8 greetTheWorld ( ) ;
9 greetTheAudience ( ) ;
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Closures in JavaScript
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Closures in JavaScript
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Closures in JavaScript - Why?

I The scope chain is created during function declaration
I Which function may access which scope

I A fresh scope is created every time a function is invoked
(activated)

I Where a function stores its inner variables

I All outer scopes will be kept in memory while at least one
inner scope references them.
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What comes next?

Closure Design Patterns
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Closure based design patterns

I As with object orientation certain design patterns can be
extracted from working with closures/lamda functions

I Callback Iteration
I Pluggable Behaviour
I Transparent Lazy-Loading
I Function Wrapping
I Composition
I Memoization
I Currying

Be advised, as this are no strict design patterns their names may
vary in literature
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What comes next?

Callback Iteration
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Callback Iteration

I Callback iteration is a teqnique, to isolate traversal logic from
operation logic

I It’s OO counterpart would be the Visitor pattern
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Callback Iteration - Example

1 var t rave rseOb jec t = function ( ob jec t , opera t ion ) {
2 var key ;
3 f o r ( key in ob jec t ) {
4 i f ( ob jec t . hasOwnProperty ( key ) ) {
5 opera t ion ( ob jec t [ key ] , key ) ;
6 }

7 }

8 }

9

10 t rave rseOb jec t ( { one : 1 , two : 2 , th ree : 3 } , function ( value , key ) {
11 a l e r t ( key + ” has the value ” + value ) ;
12 } ) ;
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Callback Iteration - Practical use

I Already present in JavaScript (ES5)
I Array.forEach

I Available in mostly any framework on objects as well
I jQuery: jQuery.each
I ExtJs: Ext.each
I ...

I Don’t stop there. You can use it to iterate complex structures
like, trees, jumplists, dual lists, ...

I The visitor pattern is quite usefull, but might be overkill in a lot
of situations
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What comes next?

Pluggable Behaviour
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Pluggable Behaviour

I Technique to create a generic process, which is configured
later on by injecting decision logic

1 var aler tFromArray = function ( input , dec is ion ) {
2 var i ,
3 l eng th = inpu t . leng th ;
4

5 f o r ( i = 0 ; i < l eng th ; i ++) {
6 i f ( dec is ion ( i npu t [ i ] , i ) ) {
7 a l e r t ( i npu t [ i ] ) ;
8 }

9 }

10 }

11

12 aler tFromArray ( [ 1 ,2 ,3 ,4 ,5 ] , function ( value , index ) {
13 return value % 2 === 0;
14 } ) ; / / 2 ,4
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Pluggable Behaviour - Practical Use

I Simple replacement for the strategy pattern

I Creation and configuration of filter chains

I Dynamic User-Choice limitation
I Dropdowns, Options, Checkboxes, ...
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What comes next?

Transparent
Lazy-Loading
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Transparent Lazy-Loading

I Transparent Lazy-Loading is a technique, which allows the
lazy initialization of resources and or programcode, without
the calling context knowing about this.
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Transparent Lazy-loading - Example

I Imagine a simple Event registration abstraction
I Modern browsers support the DOM Level 2 Events Model:
addEventListener(...)

I Older Internet Explorer version do not: attachEvent(...)

I Detecting the featureset of the browser at loading time,
combined with defining the proper behaviour increases
loading time

I Detecting and executing the proper registration everytime an
event is registered slows down the application significantly as
well

Detect and define proper behaviour once on the first call of the
functionallity
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Transparent Lazy-loading - Example

1 var addEventL is tener = function ( t a rge t , eventType , handler ) {
2 / / Modern browser
3 i f ( t a r g e t . addEventL is tener ) {
4 addEventL is tener = function ( t a rge t , eventType , handler ) {
5 t a r g e t . addEventLis tener ( ta rge t , eventType , handler ) ;
6 }

7 }

8 / / I n t e r n e t Exp lorer
9 else {

10 addEventL is tener = function ( t a rge t , eventType , handler ) {
11 t a r g e t . a t tachEvent ( ” on ” + eventType , handler ) ;
12 }

13 }

14

15 / / Seemlessly c a l l the se lec ted implementat ion
16 addEventL is tener ( ta rge t , eventType , handler ) ;
17 }
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What comes next?

Function Wrapping
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Function Wrapping

I Function Wrapping is a technique to wrap the behaviour of
one function with another one

1 var doSomething = function ( ) {
2 a l e r t ( ” Yeah ! ” ) ;
3 }

4

5 var t rackOpera t ion = function ( opera t ion ) {
6 a l e r t ( ’ S ta r ted opera t ion ’ ) ;
7 opera t ion ( ) ;
8 a l e r t ( ’ F in ished opera t ion ’ ) ;
9 }

10

11 t rackOpera t ion ( doSomething ) ;
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Function Wrapping - Pratical use

I A modified version of this technique can for example be used
to transparently add profiling and/or timing code to the
application

Closure Design Patterns 35 / 54



Function Wrapping - Pratical use

1 var doSomething = function ( ) {
2 a l e r t ( ” Yeah ! ” ) ;
3 }

4

5 var t imeOperat ion = function ( opera t ion ) {
6 return function ( ) {
7 a l e r t ( ’ S ta r ted opera t ion : ’ + (new Date ( ) ) . getTime ( ) ) ;
8 opera t ion ( ) ;
9 a l e r t ( ’ F in ished opera t ion : ’ + (new Date ( ) ) . getTime ( ) ) ;

10 }

11 }

12

13 / / Transparent wrapping
14 doSomething = t imeOperat ion ( doSomething ) ;
15 doSomething ( ) / / W i l l be t imed
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What comes next?

Composition
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Composition

I Composition is a technique to combine the result of a chain of
operations
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Composition - Example

1 var addOne = function ( value ) {
2 return value + 1;
3 }

4 var addTen = function ( value ) {
5 return value + 10;
6 }

7

8 var composi t ion = function ( operat ions , i n i t i a l ) {
9 var i ,

10 l a s t R e s u l t = i n i t i a l ,
11 l eng th = opera t ions . leng th ;
12

13 f o r ( i = 0 ; i < l eng th ; i ++) {
14 l a s t R e s u l t = opera t ions [ i ] ( l a s t R e s u l t ) ;
15 }

16

17 return l a s t R e s u l t ;
18 }

19

20 a l e r t ( composi t ion ( [ addOne , addTen , addOne ] , 0 ) ) ; / / 12
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Composition - Pratical Use

I Composition is an easy way to create complex
dataprocessing routines from simple base elements

I The created composition operation can be reused as a
callback or new base operation
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Composition - Practical Use - Example

1 var addOne = function ( value ) { . . . }
2 var addTen = function ( value ) { . . . }
3

4 var composi t ion = function ( opera t ions ) {
5 return function ( i n i t i a l ) {
6 var i ,
7 l a s t R e s u l t = i n i t i a l ,
8 l eng th = opera t ions . leng th ;
9

10 f o r ( i = 0 ; i < l eng th ; i ++) {
11 l a s t R e s u l t = opera t ions [ i ] ( l a s t R e s u l t ) ;
12 }

13

14 return l a s t R e s u l t ;
15 } ;
16 }

17

18 var addTwelve = composi t ion ( [ addOne , addTen , addOne ] ) ;
19

20 a l e r t ( addTwelve ( 3 ) ) ; / / 15

Closure Design Patterns 40 / 54



What comes next?

Memoization
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Memoization

I Memoization is a technique to store partial results of complex
calculation in order to speedup further calculations

I May be used as a caching strategy for calling the same
calculation over and over again as well
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Fibonacci sequence

I Calculating the fibonacci sequence (recursively)

1 var f i b = function ( i ) {
2 i f ( i == 0) {
3 return 0;
4 }

5

6 i f ( i == 1) {

7 return 1;
8 }

9

10 return
11 f i b ( i −1) + f i b ( i −2) ;
12 }
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Fibonacci sequence

I Slow on consecutive calls

I Intermediate results could be cached
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Memoization

1 function memoize ( fn ) {
2 return ( function ( ) {
3 var storage = { } ;
4 var memoizedFn = function ( arg ) {
5 i f ( s torage [ arg ] === undef ined ) {
6 storage [ arg ] = fn ( arg ) ;
7 }

8

9 return storage [ arg ] ;
10 }

11

12 return memoizedFn ;
13 } ) ( ) ;
14 }
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Memoization - Usage

I Memoization can be dynamically applied to any function

1 var f i b = function ( i ) { . . . }
2 var memoize = function ( fn ) { . . . }
3

4 f i b = memoize ( f i b ) ;
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What comes next?

Eventual Memoization
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Eventual Memoization

I Memoization does only work with functions, which are
idempotent

I Every call to the function with the same arguments yields the
same output

I What to do if this is not true
I A result should be shown to the user as soon as possible.
I Data does not need to be accurate immediately.
I Eventually data needs to be accurate.
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Eventual Memoization

1 function eventua l ( fn ) {
2 return ( function ( ) {
3 var storage = { } ;
4 var t imou t = nul l ;
5 return function ( arg ) {
6 i f ( t imeout !== nul l ) { c learTimeout ( t imeout ) ;

}

7 setTimeout ( function ( ) {
8 storage [ arg ] = fn ( arg ) ;
9 } , 1) ;

10

11 return storage [ arg ] ;
12 }

13 } ) ( ) ;
14 }
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Memoization - Usage

I Eventual Memoization can be dynamically applied to any
function

1 var addTimestamp = function ( number ) {
2 var now = new Date ( ) ;
3 return number + now . getTime ( ) ;
4 }

5

6 addTimestamp = eventua l ( addTimestamp ) ;
7

8 addTimestamp (100) ; / / undef ined
9 addTimestamp (200) ; / / now + 100

10 addTimestamp (500) ; / / now + 100
11 addTimestamp ( 7 ) ; / / now + 500
12 . . .
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What comes next?

Currying
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Currying

I In theory:
I Currying is the technique of transforming a function that takes

multiple arguments in such a way that it can be called as a
chain of functions each with a single argument

I Pratical application:
I Take a general function transforming it into a new function with

some of its arguments fixed
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Simple Currying - Example

1 var sequen t ia l = function ( s t a r t , end ) {
2 var i ;
3 f o r ( i = s t a r t ; i <= end ; i ++) {
4 a l e r t ( i ) ;
5 }

6 }

7

8 sequen t ia l ( 0 ,5 ) ; / / 0 ,1 ,2 ,3 ,4 ,5
9

10 var f i x S e q u e n t i a l S t a r t = function ( f i x e d S t a r t ) { . . . }
11

12 var sequen t i a lS ta r tA t5 = function f i x S e q u e n t i a l S t a r t ( 5 ) ;
13

14 sequen t i a lS ta r tA t5 (10) ; / / 5 ,6 ,7 ,8 ,9 ,10
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Simple Currying - Example

1 var sequen t ia l = function ( s t a r t , end ) { . . . }
2

3 var f i x S e q u e n t i a l S t a r t = function ( f i x e d S t a r t ) {
4 return function ( end ) {
5 return sequen t ia l ( f i x e d S t a r t , end ) ;
6 }

7 }

8

9 var sequen t i a lS ta r tA t5 = function f i x S e q u e n t i a l S t a r t ( 5 ) ;
10

11 sequen t i a lS ta r tA t5 (10) ; / / 5 ,6 ,7 ,8 ,9 ,10
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Real world application

I Create highly customizable operations

I Fix certain aspects of this operations to values for a certain
module/area of application in a reusable manner

I Example: A generic XHR loader, which is highly flexible, but
configured on an application level

For this to work in the real world a generic implementation of the
concept is needed
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Currying for real

1 function cur ry ( fn /∗ , . . . ∗ / ) {
2 var curryArgs = Array . p ro to type . s l i c e . c a l l ( arguments , 1 ) ;
3

4 return function ( /∗ . . . ∗ / ) {
5 var newArgs = Array . p ro to type . s l i c e . c a l l ( arguments , 0 ) ,
6 mergedArgs = curryArgs . concat ( newArgs ) ;
7

8 return fn . apply ( this , mergedArgs ) ;
9 }

10 }
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What comes next?

Conclusion
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Conclusion

I Not every problem in JavaScript needs an object oriented
approach

I You may use known OO patterns if you want to
I Think outside the box
I Get inspiration from functional programming languages
I Utilize the power of first level citizen functions
I Closures rock!
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Thanks for listening

Questions, comments or annotations?

Rate this talk: https://joind.in/7381

Slides: http://talks.qafoo.com

Contact: Jakob Westhoff <jakob@qafoo.com>
Follow Me: @jakobwesthoff
Hire us: http://qafoo.com
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