
Closure Design Patterns
The power of functions in JavaScript

Qafoo GmbH

October 25, 2012

Closure Design Patterns 1 / 54

What comes next?

Welcome

Closure Design Patterns 2 / 54

About Me

Jakob Westhoff
I More than 11 years of

professional PHP
experience

I More than 8 years of
professional JavaScript
experience

I Open source enthusiast
I Regular speaker at

(inter)national conferences
I Consultant, Trainer and

Author

Working with

Qafoo
passion for software quality

Closure Design Patterns 2 / 54

About Me

Jakob Westhoff
I More than 11 years of

professional PHP
experience

I More than 8 years of
professional JavaScript
experience

I Open source enthusiast
I Regular speaker at

(inter)national conferences
I Consultant, Trainer and

Author

Working with

Qafoo
passion for software quality

We help people to create
high quality web

applications.

Closure Design Patterns 2 / 54

About Me

Jakob Westhoff
I More than 11 years of

professional PHP
experience

I More than 8 years of
professional JavaScript
experience

I Open source enthusiast
I Regular speaker at

(inter)national conferences
I Consultant, Trainer and

Author

Working with

Qafoo
passion for software quality

We help people to create
high quality web

applications.

http://qafoo.com

Closure Design Patterns 2 / 54

http://qafoo.com

Goals of this session

I Special role of functions in JavaScript

I The concept of closures

I Utilize those features
I Closure/Function Design Patterns

Closure Design Patterns 5 / 54

Goals of this session

I Special role of functions in JavaScript

I The concept of closures

I Utilize those features
I Closure/Function Design Patterns

Closure Design Patterns 5 / 54

What comes next?

Functions

Closure Design Patterns 6 / 54

First level citizens

I Functions are first level citizens in JavaScript
I Can be passed like any other variable
I Can be created inline
I Can be defined at any nesting level
I Can be assigned like any other variable

Closure Design Patterns 6 / 54

First level citizens

I Can be passed like any other variable

1 function foo (ca l l back) { }
2

3 function bar () { }
4

5 foo (bar) ;

Closure Design Patterns 7 / 54

First level citizens

I Can be created inline

1 function foo (ca l l back) { }
2

3 foo (function () {
4 / / . .
5 }) ;

Closure Design Patterns 8 / 54

First level citizens

I Can be defined at any nesting level

1 function foo () {
2 function bar () {
3 function baz () {
4 / / . . .
5 }

6 }

7 }

Closure Design Patterns 9 / 54

First level citizens

I Can be assigned like any other variable

1 function baz (ca l l back) { }
2

3 var foo = function () { }
4 var bar = foo ;
5 baz (bar) ;

Closure Design Patterns 10 / 54

What comes next?

Scope Basics

Closure Design Patterns 11 / 54

JavaScript Scoping Basics

I Scoping in JavaScript isn’t trivial
I To understand closures only a part of JavaScripts scoping

rules are essential
I Especially Scope Isolation and the Scope Chain

Closure Design Patterns 11 / 54

JavaScript Scoping Basics

I Scoping in JavaScript isn’t trivial
I To understand closures only a part of JavaScripts scoping

rules are essential
I Especially Scope Isolation and the Scope Chain

Closure Design Patterns 11 / 54

JavaScript Scoping Basics

I Scoping in JavaScript isn’t trivial
I To understand closures only a part of JavaScripts scoping

rules are essential
I Especially Scope Isolation and the Scope Chain

Closure Design Patterns 11 / 54

Scope Isolation

I JavaScript does only provide scope isolation on a function
level

I In contrast to block level isolation in other languages (C, C++,
Java, ...)

1 var i = 100;
2

3 (function () {
4 f o r (var i =1; i <=3; ++ i) {
5 a l e r t (i) ; / / 1 , 2 , 3
6 }

7 }) () ;
8

9 a l e r t (i) / / 100

Closure Design Patterns 12 / 54

Scope Isolation

I JavaScript does only provide scope isolation on a function
level

I In contrast to block level isolation in other languages (C, C++,
Java, ...)

1 var i = 100;
2

3 (function () {
4 f o r (var i =1; i <=3; ++ i) {
5 a l e r t (i) ; / / 1 , 2 , 3
6 }

7 }) () ;
8

9 a l e r t (i) / / 100

Closure Design Patterns 12 / 54

Scope Isolation

I JavaScript does only provide scope isolation on a function
level

I In contrast to block level isolation in other languages (C, C++,
Java, ...)

1 var i = 100;
2

3 f o r (var i =1; i <=3; ++ i) {
4 a l e r t (i) ; / / 1 , 2 , 3
5 }

6

7 a l e r t (i) / / 100 or 4?

1 var i = 100;
2

3 (function () {
4 f o r (var i =1; i <=3; ++ i) {
5 a l e r t (i) ; / / 1 , 2 , 3
6 }

7 }) () ;
8

9 a l e r t (i) / / 100

Closure Design Patterns 12 / 54

Scope Isolation

I JavaScript does only provide scope isolation on a function
level

I In contrast to block level isolation in other languages (C, C++,
Java, ...)

1 var i = 100;
2

3 f o r (var i =1; i <=3; ++ i) {
4 a l e r t (i) ; / / 1 , 2 , 3
5 }

6

7 a l e r t (i) / / 4

1 var i = 100;
2

3 (function () {
4 f o r (var i =1; i <=3; ++ i) {
5 a l e r t (i) ; / / 1 , 2 , 3
6 }

7 }) () ;
8

9 a l e r t (i) / / 100

Closure Design Patterns 12 / 54

Scope Isolation

I JavaScript does only provide scope isolation on a function
level

I In contrast to block level isolation in other languages (C, C++,
Java, ...)

1 var i = 100;
2

3 f o r (var i =1; i <=3; ++ i) {
4 a l e r t (i) ; / / 1 , 2 , 3
5 }

6

7 a l e r t (i) / / 4

1 var i = 100;
2

3 (function () {
4 f o r (var i =1; i <=3; ++ i) {
5 a l e r t (i) ; / / 1 , 2 , 3
6 }

7 }) () ;
8

9 a l e r t (i) / / 100

Closure Design Patterns 12 / 54

Scope Chain

I JavaScript Engines chain scopes during their creation
I Inner scopes are always allowed to access outer scopes

variables
I Outer scopes can not access inner scopes variables
I Outer scope access is done by reference not by value

Closure Design Patterns 13 / 54

Scope Chain

1 var a = 42;

Closure Design Patterns 14 / 54

Scope Chain

1 var a = 42;

a = 42

Closure Design Patterns 14 / 54

Scope Chain

1 var a = 42;

null

a = 42

Closure Design Patterns 14 / 54

Scope Chain

1 var a = 42;
2

3 function somefunc () {
4 var b = 23;
5 }

null

a = 42 b = 23

Closure Design Patterns 14 / 54

Scope Chain

1 var a = 42;
2

3 function somefunc () {
4 var b = 23;
5 }

null

a = 42 b = 23

Closure Design Patterns 14 / 54

Scope Chain

1 var a = 42;
2

3 function somefunc () {
4 var b = 23;
5

6 function other func () {
7 var c = ” foo ” ;
8 }

9 }

null

a = 42 b = 23 c = "foo"

Closure Design Patterns 14 / 54

Scope Chain

1 var a = 42;
2

3 function somefunc () {
4 var b = 23;
5

6 function other func () {
7 var c = ” foo ” ;
8 }

9 }

null

a = 42 b = 23 c = "foo"

Closure Design Patterns 14 / 54

Scope Chain

1 var a = 42;
2

3 function somefunc () {
4 var b = 23;
5

6 function other func () {
7 var c = ” foo ” ;
8 var a = ” bar ” ;
9 }

10 }

null

a = 42 b = 23 c = "foo"
a = "bar"

Closure Design Patterns 14 / 54

Scope Chain

1 var a = 42;
2

3 function somefunc () {
4 var b = 23;
5

6 function other func () {
7 var c = ” foo ” ;
8 var a = ” bar ” ;
9 a = ” baz ” ;

10 }

11 }

null

a = 42 b = 23 c = "foo"
a = "baz"

Closure Design Patterns 14 / 54

Scope Chain

1 var a = 42;
2

3 function somefunc () {
4 var b = 23;
5

6 function other func () {
7 var c = ” foo ” ;
8 var a = ” bar ” ;
9 a = ” baz ” ;

10 b = 5;
11 }

12 }

null

a = 42 b = 5 c = "foo"
a = "baz"

Closure Design Patterns 14 / 54

Scope Chain

1 var a = 42;
2

3 function somefunc () {
4 var b = 23;
5

6 function other func () {
7 var c = ” foo ” ;
8 a = ” baz ” ;
9 }

10 }

null

a = "baz" b = 23 c = "foo"

Closure Design Patterns 14 / 54

What comes next?

Closures

Closure Design Patterns 15 / 54

Closures in computer science

I Closures are functions

I They are closed over their free variables
I Variables from an outside scope can be accessed (upvalues)
I Still accessible if outer scope ceases to exist

I Upvalues are passed by reference not by value

Closure Design Patterns 15 / 54

Closures in JavaScript

1 var gree t i ng = ” He l lo World ! ” ;
2

3 function showGreetings () {
4 a l e r t (g ree t i ng) ;
5 }

6

7 showGreetings () ;

Closure Design Patterns 16 / 54

Closures in JavaScript

Closure Design Patterns 17 / 54

Closures in JavaScript

1 function createAlertMessage (message) {
2 var showMessage = function () {
3 a l e r t (message) ;
4 }

5

6 return showMessage ;
7 }

Closure Design Patterns 18 / 54

Closures in JavaScript

1 function createAlertMessage (message) {
2 var showMessage = function () {
3 a l e r t (message) ;
4 }

5

6 return showMessage ;
7 }

1 var greetTheWorld = createAlertMessage (
2 ” He l lo World ! ”
3) ;
4

5 greetTheWorld () ;

Closure Design Patterns 18 / 54

Closures in JavaScript

Closure Design Patterns 19 / 54

Closures in JavaScript

1 function createAlertMessage (message) {
2 var showMessage = function () {
3 a l e r t (message) ;
4 }

5

6 return showMessage ;
7 }

1 var greetTheWorld = createAlertMessage (
2 ” He l lo World ! ”
3) ;
4 var greetTheAudience = createAlertMessage (
5 ” He l lo Audience . You are great ! ”
6)
7

8 greetTheWorld () ;
9 greetTheAudience () ;

Closure Design Patterns 20 / 54

Closures in JavaScript

Closure Design Patterns 21 / 54

Closures in JavaScript

Closure Design Patterns 22 / 54

Closures in JavaScript - Why?

I The scope chain is created during function declaration
I Which function may access which scope

I A fresh scope is created every time a function is invoked
(activated)

I Where a function stores its inner variables

I All outer scopes will be kept in memory while at least one
inner scope references them.

Closure Design Patterns 23 / 54

Closures in JavaScript - Why?

I The scope chain is created during function declaration
I Which function may access which scope

I A fresh scope is created every time a function is invoked
(activated)

I Where a function stores its inner variables

I All outer scopes will be kept in memory while at least one
inner scope references them.

Closure Design Patterns 23 / 54

Closures in JavaScript - Why?

I The scope chain is created during function declaration
I Which function may access which scope

I A fresh scope is created every time a function is invoked
(activated)

I Where a function stores its inner variables

I All outer scopes will be kept in memory while at least one
inner scope references them.

Closure Design Patterns 23 / 54

Closures in JavaScript - Why?

1 function createAlertMessage (message) {
2 var showMessage = function () {
3 a l e r t (message) ;
4 }

5

6 return showMessage ;
7 }

1 var greetTheWorld = createAlertMessage (
2 ” He l lo World ! ”
3) ;
4 var greetTheAudience = createAlertMessage (
5 ” He l lo Audience . You are great ! ”
6)
7

8 greetTheWorld () ;
9 greetTheAudience () ;

Closure Design Patterns 24 / 54

What comes next?

Closure Design Patterns

Closure Design Patterns 25 / 54

Closure based design patterns

I As with object orientation certain design patterns can be
extracted from working with closures/lamda functions

I Callback Iteration
I Pluggable Behaviour
I Transparent Lazy-Loading
I Function Wrapping
I Composition
I Memoization
I Currying

Be advised, as this are no strict design patterns their names may
vary in literature

Closure Design Patterns 25 / 54

Closure based design patterns

I As with object orientation certain design patterns can be
extracted from working with closures/lamda functions

I Callback Iteration
I Pluggable Behaviour
I Transparent Lazy-Loading
I Function Wrapping
I Composition
I Memoization
I Currying

Be advised, as this are no strict design patterns their names may
vary in literature

Closure Design Patterns 25 / 54

Closure based design patterns

I As with object orientation certain design patterns can be
extracted from working with closures/lamda functions

I Callback Iteration
I Pluggable Behaviour
I Transparent Lazy-Loading
I Function Wrapping
I Composition
I Memoization
I Currying

Be advised, as this are no strict design patterns their names may
vary in literature

Closure Design Patterns 25 / 54

What comes next?

Callback Iteration

Closure Design Patterns 26 / 54

Callback Iteration

I Callback iteration is a teqnique, to isolate traversal logic from
operation logic

I It’s OO counterpart would be the Visitor pattern

Closure Design Patterns 26 / 54

Callback Iteration - Example

1 var t rave rseOb jec t = function (ob jec t , opera t ion) {
2 var key ;
3 f o r (key in ob jec t) {
4 i f (ob jec t . hasOwnProperty (key)) {
5 opera t ion (ob jec t [key] , key) ;
6 }

7 }

8 }

9

10 t rave rseOb jec t ({ one : 1 , two : 2 , th ree : 3 } , function (value , key) {
11 a l e r t (key + ” has the value ” + value) ;
12 }) ;

Closure Design Patterns 27 / 54

Callback Iteration - Practical use

I Already present in JavaScript (ES5)
I Array.forEach

I Available in mostly any framework on objects as well
I jQuery: jQuery.each
I ExtJs: Ext.each
I ...

I Don’t stop there. You can use it to iterate complex structures
like, trees, jumplists, dual lists, ...

I The visitor pattern is quite usefull, but might be overkill in a lot
of situations

Closure Design Patterns 28 / 54

Callback Iteration - Practical use

I Already present in JavaScript (ES5)
I Array.forEach

I Available in mostly any framework on objects as well
I jQuery: jQuery.each
I ExtJs: Ext.each
I ...

I Don’t stop there. You can use it to iterate complex structures
like, trees, jumplists, dual lists, ...

I The visitor pattern is quite usefull, but might be overkill in a lot
of situations

Closure Design Patterns 28 / 54

Callback Iteration - Practical use

I Already present in JavaScript (ES5)
I Array.forEach

I Available in mostly any framework on objects as well
I jQuery: jQuery.each
I ExtJs: Ext.each
I ...

I Don’t stop there. You can use it to iterate complex structures
like, trees, jumplists, dual lists, ...

I The visitor pattern is quite usefull, but might be overkill in a lot
of situations

Closure Design Patterns 28 / 54

Callback Iteration - Practical use

I Already present in JavaScript (ES5)
I Array.forEach

I Available in mostly any framework on objects as well
I jQuery: jQuery.each
I ExtJs: Ext.each
I ...

I Don’t stop there. You can use it to iterate complex structures
like, trees, jumplists, dual lists, ...

I The visitor pattern is quite usefull, but might be overkill in a lot
of situations

Closure Design Patterns 28 / 54

What comes next?

Pluggable Behaviour

Closure Design Patterns 29 / 54

Pluggable Behaviour

I Technique to create a generic process, which is configured
later on by injecting decision logic

1 var aler tFromArray = function (input , dec is ion) {
2 var i ,
3 l eng th = inpu t . leng th ;
4

5 f o r (i = 0 ; i < l eng th ; i ++) {
6 i f (dec is ion (i npu t [i] , i)) {
7 a l e r t (i npu t [i]) ;
8 }

9 }

10 }

11

12 aler tFromArray ([1 ,2 ,3 ,4 ,5] , function (value , index) {
13 return value % 2 === 0;
14 }) ; / / 2 ,4

Closure Design Patterns 29 / 54

Pluggable Behaviour - Practical Use

I Simple replacement for the strategy pattern

I Creation and configuration of filter chains

I Dynamic User-Choice limitation
I Dropdowns, Options, Checkboxes, ...

Closure Design Patterns 30 / 54

What comes next?

Transparent
Lazy-Loading

Closure Design Patterns 31 / 54

Transparent Lazy-Loading

I Transparent Lazy-Loading is a technique, which allows the
lazy initialization of resources and or programcode, without
the calling context knowing about this.

Closure Design Patterns 31 / 54

Transparent Lazy-loading - Example

I Imagine a simple Event registration abstraction
I Modern browsers support the DOM Level 2 Events Model:
addEventListener(...)

I Older Internet Explorer version do not: attachEvent(...)

I Detecting the featureset of the browser at loading time,
combined with defining the proper behaviour increases
loading time

I Detecting and executing the proper registration everytime an
event is registered slows down the application significantly as
well

Detect and define proper behaviour once on the first call of the
functionallity

Closure Design Patterns 32 / 54

Transparent Lazy-loading - Example

I Imagine a simple Event registration abstraction
I Modern browsers support the DOM Level 2 Events Model:
addEventListener(...)

I Older Internet Explorer version do not: attachEvent(...)

I Detecting the featureset of the browser at loading time,
combined with defining the proper behaviour increases
loading time

I Detecting and executing the proper registration everytime an
event is registered slows down the application significantly as
well

Detect and define proper behaviour once on the first call of the
functionallity

Closure Design Patterns 32 / 54

Transparent Lazy-loading - Example

I Imagine a simple Event registration abstraction
I Modern browsers support the DOM Level 2 Events Model:
addEventListener(...)

I Older Internet Explorer version do not: attachEvent(...)

I Detecting the featureset of the browser at loading time,
combined with defining the proper behaviour increases
loading time

I Detecting and executing the proper registration everytime an
event is registered slows down the application significantly as
well

Detect and define proper behaviour once on the first call of the
functionallity

Closure Design Patterns 32 / 54

Transparent Lazy-loading - Example

1 var addEventL is tener = function (t a rge t , eventType , handler) {
2 / / Modern browser
3 i f (t a r g e t . addEventL is tener) {
4 addEventL is tener = function (t a rge t , eventType , handler) {
5 t a r g e t . addEventLis tener (ta rge t , eventType , handler) ;
6 }

7 }

8 / / I n t e r n e t Exp lorer
9 else {

10 addEventL is tener = function (t a rge t , eventType , handler) {
11 t a r g e t . a t tachEvent (” on ” + eventType , handler) ;
12 }

13 }

14

15 / / Seemlessly c a l l the se lec ted implementat ion
16 addEventL is tener (ta rge t , eventType , handler) ;
17 }

Closure Design Patterns 33 / 54

What comes next?

Function Wrapping

Closure Design Patterns 34 / 54

Function Wrapping

I Function Wrapping is a technique to wrap the behaviour of
one function with another one

1 var doSomething = function () {
2 a l e r t (” Yeah ! ”) ;
3 }

4

5 var t rackOpera t ion = function (opera t ion) {
6 a l e r t (’ S ta r ted opera t ion ’) ;
7 opera t ion () ;
8 a l e r t (’ F in ished opera t ion ’) ;
9 }

10

11 t rackOpera t ion (doSomething) ;

Closure Design Patterns 34 / 54

Function Wrapping - Pratical use

I A modified version of this technique can for example be used
to transparently add profiling and/or timing code to the
application

Closure Design Patterns 35 / 54

Function Wrapping - Pratical use

1 var doSomething = function () {
2 a l e r t (” Yeah ! ”) ;
3 }

4

5 var t imeOperat ion = function (opera t ion) {
6 return function () {
7 a l e r t (’ S ta r ted opera t ion : ’ + (new Date ()) . getTime ()) ;
8 opera t ion () ;
9 a l e r t (’ F in ished opera t ion : ’ + (new Date ()) . getTime ()) ;

10 }

11 }

12

13 / / Transparent wrapping
14 doSomething = t imeOperat ion (doSomething) ;
15 doSomething () / / W i l l be t imed

Closure Design Patterns 36 / 54

What comes next?

Composition

Closure Design Patterns 37 / 54

Composition

I Composition is a technique to combine the result of a chain of
operations

Closure Design Patterns 37 / 54

Composition - Example

1 var addOne = function (value) {
2 return value + 1;
3 }

4 var addTen = function (value) {
5 return value + 10;
6 }

7

8 var composi t ion = function (operat ions , i n i t i a l) {
9 var i ,

10 l a s t R e s u l t = i n i t i a l ,
11 l eng th = opera t ions . leng th ;
12

13 f o r (i = 0 ; i < l eng th ; i ++) {
14 l a s t R e s u l t = opera t ions [i] (l a s t R e s u l t) ;
15 }

16

17 return l a s t R e s u l t ;
18 }

19

20 a l e r t (composi t ion ([addOne , addTen , addOne] , 0)) ; / / 12

Closure Design Patterns 38 / 54

Composition - Pratical Use

I Composition is an easy way to create complex
dataprocessing routines from simple base elements

I The created composition operation can be reused as a
callback or new base operation

Closure Design Patterns 39 / 54

Composition - Practical Use - Example

1 var addOne = function (value) { . . . }
2 var addTen = function (value) { . . . }
3

4 var composi t ion = function (opera t ions) {
5 return function (i n i t i a l) {
6 var i ,
7 l a s t R e s u l t = i n i t i a l ,
8 l eng th = opera t ions . leng th ;
9

10 f o r (i = 0 ; i < l eng th ; i ++) {
11 l a s t R e s u l t = opera t ions [i] (l a s t R e s u l t) ;
12 }

13

14 return l a s t R e s u l t ;
15 } ;
16 }

17

18 var addTwelve = composi t ion ([addOne , addTen , addOne]) ;
19

20 a l e r t (addTwelve (3)) ; / / 15

Closure Design Patterns 40 / 54

What comes next?

Memoization

Closure Design Patterns 41 / 54

Memoization

I Memoization is a technique to store partial results of complex
calculation in order to speedup further calculations

I May be used as a caching strategy for calling the same
calculation over and over again as well

Closure Design Patterns 41 / 54

Fibonacci sequence

I Calculating the fibonacci sequence (recursively)

1 var f i b = function (i) {
2 i f (i == 0) {
3 return 0;
4 }

5

6 i f (i == 1) {

7 return 1;
8 }

9

10 return
11 f i b (i −1) + f i b (i −2) ;
12 }

Closure Design Patterns 42 / 54

Fibonacci sequence

I Slow on consecutive calls

I Intermediate results could be cached

Closure Design Patterns 43 / 54

Memoization

1 function memoize (fn) {
2 return (function () {
3 var storage = { } ;
4 var memoizedFn = function (arg) {
5 i f (s torage [arg] === undef ined) {
6 storage [arg] = fn (arg) ;
7 }

8

9 return storage [arg] ;
10 }

11

12 return memoizedFn ;
13 }) () ;
14 }

Closure Design Patterns 44 / 54

Memoization - Usage

I Memoization can be dynamically applied to any function

1 var f i b = function (i) { . . . }
2 var memoize = function (fn) { . . . }
3

4 f i b = memoize (f i b) ;

Closure Design Patterns 45 / 54

What comes next?

Eventual Memoization

Closure Design Patterns 46 / 54

Eventual Memoization

I Memoization does only work with functions, which are
idempotent

I Every call to the function with the same arguments yields the
same output

I What to do if this is not true
I A result should be shown to the user as soon as possible.
I Data does not need to be accurate immediately.
I Eventually data needs to be accurate.

Closure Design Patterns 46 / 54

Eventual Memoization

I Memoization does only work with functions, which are
idempotent

I Every call to the function with the same arguments yields the
same output

I What to do if this is not true
I A result should be shown to the user as soon as possible.
I Data does not need to be accurate immediately.
I Eventually data needs to be accurate.

Closure Design Patterns 46 / 54

Eventual Memoization

I Memoization does only work with functions, which are
idempotent

I Every call to the function with the same arguments yields the
same output

I What to do if this is not true
I A result should be shown to the user as soon as possible.
I Data does not need to be accurate immediately.
I Eventually data needs to be accurate.

Closure Design Patterns 46 / 54

Eventual Memoization

1 function eventua l (fn) {
2 return (function () {
3 var storage = { } ;
4 var t imou t = nul l ;
5 return function (arg) {
6 i f (t imeout !== nul l) { c learTimeout (t imeout) ;

}

7 setTimeout (function () {
8 storage [arg] = fn (arg) ;
9 } , 1) ;

10

11 return storage [arg] ;
12 }

13 }) () ;
14 }

Closure Design Patterns 47 / 54

Memoization - Usage

I Eventual Memoization can be dynamically applied to any
function

1 var addTimestamp = function (number) {
2 var now = new Date () ;
3 return number + now . getTime () ;
4 }

5

6 addTimestamp = eventua l (addTimestamp) ;
7

8 addTimestamp (100) ; / / undef ined
9 addTimestamp (200) ; / / now + 100

10 addTimestamp (500) ; / / now + 100
11 addTimestamp (7) ; / / now + 500
12 . . .

Closure Design Patterns 48 / 54

What comes next?

Currying

Closure Design Patterns 49 / 54

Currying

I In theory:
I Currying is the technique of transforming a function that takes

multiple arguments in such a way that it can be called as a
chain of functions each with a single argument

I Pratical application:
I Take a general function transforming it into a new function with

some of its arguments fixed

Closure Design Patterns 49 / 54

Simple Currying - Example

1 var sequen t ia l = function (s t a r t , end) {
2 var i ;
3 f o r (i = s t a r t ; i <= end ; i ++) {
4 a l e r t (i) ;
5 }

6 }

7

8 sequen t ia l (0 ,5) ; / / 0 ,1 ,2 ,3 ,4 ,5
9

10 var f i x S e q u e n t i a l S t a r t = function (f i x e d S t a r t) { . . . }
11

12 var sequen t i a lS ta r tA t5 = function f i x S e q u e n t i a l S t a r t (5) ;
13

14 sequen t i a lS ta r tA t5 (10) ; / / 5 ,6 ,7 ,8 ,9 ,10

Closure Design Patterns 50 / 54

Simple Currying - Example

1 var sequen t ia l = function (s t a r t , end) { . . . }
2

3 var f i x S e q u e n t i a l S t a r t = function (f i x e d S t a r t) {
4 return function (end) {
5 return sequen t ia l (f i x e d S t a r t , end) ;
6 }

7 }

8

9 var sequen t i a lS ta r tA t5 = function f i x S e q u e n t i a l S t a r t (5) ;
10

11 sequen t i a lS ta r tA t5 (10) ; / / 5 ,6 ,7 ,8 ,9 ,10

Closure Design Patterns 50 / 54

Real world application

I Create highly customizable operations

I Fix certain aspects of this operations to values for a certain
module/area of application in a reusable manner

I Example: A generic XHR loader, which is highly flexible, but
configured on an application level

For this to work in the real world a generic implementation of the
concept is needed

Closure Design Patterns 51 / 54

Real world application

I Create highly customizable operations

I Fix certain aspects of this operations to values for a certain
module/area of application in a reusable manner

I Example: A generic XHR loader, which is highly flexible, but
configured on an application level

For this to work in the real world a generic implementation of the
concept is needed

Closure Design Patterns 51 / 54

Currying for real

1 function cur ry (fn /∗ , . . . ∗ /) {
2 var curryArgs = Array . p ro to type . s l i c e . c a l l (arguments , 1) ;
3

4 return function (/∗ . . . ∗ /) {
5 var newArgs = Array . p ro to type . s l i c e . c a l l (arguments , 0) ,
6 mergedArgs = curryArgs . concat (newArgs) ;
7

8 return fn . apply (this , mergedArgs) ;
9 }

10 }

Closure Design Patterns 52 / 54

What comes next?

Conclusion

Closure Design Patterns 53 / 54

Conclusion

I Not every problem in JavaScript needs an object oriented
approach

I You may use known OO patterns if you want to
I Think outside the box
I Get inspiration from functional programming languages
I Utilize the power of first level citizen functions
I Closures rock!

Closure Design Patterns 53 / 54

Conclusion

I Not every problem in JavaScript needs an object oriented
approach

I You may use known OO patterns if you want to
I Think outside the box
I Get inspiration from functional programming languages
I Utilize the power of first level citizen functions
I Closures rock!

Closure Design Patterns 53 / 54

Conclusion

I Not every problem in JavaScript needs an object oriented
approach

I You may use known OO patterns if you want to
I Think outside the box
I Get inspiration from functional programming languages
I Utilize the power of first level citizen functions
I Closures rock!

Closure Design Patterns 53 / 54

Conclusion

I Not every problem in JavaScript needs an object oriented
approach

I You may use known OO patterns if you want to
I Think outside the box
I Get inspiration from functional programming languages
I Utilize the power of first level citizen functions
I Closures rock!

Closure Design Patterns 53 / 54

Conclusion

I Not every problem in JavaScript needs an object oriented
approach

I You may use known OO patterns if you want to
I Think outside the box
I Get inspiration from functional programming languages
I Utilize the power of first level citizen functions
I Closures rock!

Closure Design Patterns 53 / 54

Conclusion

I Not every problem in JavaScript needs an object oriented
approach

I You may use known OO patterns if you want to
I Think outside the box
I Get inspiration from functional programming languages
I Utilize the power of first level citizen functions
I Closures rock!

Closure Design Patterns 53 / 54

Thanks for listening

Questions, comments or annotations?

Rate this talk: https://joind.in/7381

Slides: http://talks.qafoo.com

Contact: Jakob Westhoff <jakob@qafoo.com>
Follow Me: @jakobwesthoff
Hire us: http://qafoo.com

Closure Design Patterns 54 / 54

	Welcome
	Functions
	Scope Basics
	Closures
	Closure Design Patterns
	Callback Iteration
	Pluggable Behaviour
	Transparent Lazy-Loading
	Function Wrapping
	Composition
	Memoization
	Eventual Memoization
	Currying
	Conclusion

