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About Me
Jakob Westhof

● PHP Professional since 
2001

● JavaScript Professional 
since 2006

● Trainer and Consultant
● Author of articles and a 

book
● Regular speaker at 

technology conferences
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Terminology

RegExp

Subject

Match



  

Terminology

RegExp

● Pattern
● Describes an arbitrary amount of strings

● Modifier
● Processing instructions



  

Terminology

Subject

● Subject
● One string which a RegExp is applied to



  

Terminology

Match

● Match
● Part of the Subject which has been matched 

by the Regular Expression



  

 

Engine
Flavors



  

● Diferent languages utilize diferent 
Regular Expression engines

● PHP (PCRE)
● Java
● Python
● Ruby
● JavaScript

...

Diferent RegExp Engines



  

● Diferent languages utilize diferent 
Regular Expression engines

● PHP (PCRE)
● Java
● Python
● Ruby
● JavaScript

...

Diferent RegExp Engines



  

 

RegExp



  

Basic structure of a RegExp

/foobar/i



  

/foobar/i

● Delimiter
● Enclosure of Pattern
● Divider between Pattern and Modifier

Basic structure of a RegExp



  

(foobar)i

● Delimiter
● PCRE allows arbitrary Brackets 

– ()   []   {}

Basic structure of a RegExp



  

RegExp – Just a String

● The RegExp Pattern is just a simple String

Techno



  

(Techno)

RegExp – Just a String

● The RegExp Pattern is just a simple String



  

● The RegExp Pattern is just a simple String

(Techno)

Web Techno Conference

RegExp – Just a String



  

● The RegExp Pattern is just a simple String

● The Pattern has to occur at least once
● The Position inside the subject is not relevant

(Techno)

Web Techno Conference

RegExp – Just a String



  

Metacharacters

● Certain characters inside a RegExp 
Pattern have got a special meaning

([We]b \s* Te+c.no)



  

 

Quantifier



  

Quantifier

● Quantifiers specify Repetitions of the 
previous character or group

(We*b Te+ch?n{1,3}o)



  

Quantifier

● Quantifiers specify Repetitions of the 
previous character or group

● * Any number of occurrences (0 → ∞)

(We*b Te+ch?n{1,3}o)



  

Quantifier

● Quantifiers specify Repetitions  of the 
previous  character or group

● * Any number of occurrences (0 → ∞)
● + One occurrence minimum (1 → ∞)

(We*b Te+ch?n{1,3}o)



  

Quantifier

● Quantifiers specify Repetitions  of the 
previous  character or group

● * Any number of occurrences (0 → ∞)
● + One occurrence minimum (1 → ∞)
● ? Not at all or one time (0 → 1)

(We*b Te+ch?n{1,3}o)



  

Quantifier

● Quantifiers specify Repetitions  of the 
previous  character or group

● * Any number of occurrences (0 → ∞)
● + One occurrence minimum (1 → ∞)
● ? Not at all or one time (0 → 1)
● {x,y} Between x and y (x → y)

(We*b Te+ch?n{1,3}o)



  

 

The Dot



  

The Dot

● The Dot (.) matches any character
● Everything except newline

(Make a .oint)



  

The Dot

● The Dot (.) matches any character
● Everything except newline

(Make a .oint)

Make a point ✓



  

The Dot

● The Dot (.) matches any character
● Everything except newline

(Make a .oint)

Make a point ✓
Make a joint ✓



  

The Dot

● The Dot (.) matches any character
● Everything except newline

(Make a .oint)

Make a point ✓
Make a joint ✓
Make a _oint ✓



  

The Dot

● Switch to single line mode
● Modifier s

● The Dot matches the newline character as 
well

(The.Dot)s



  

● The Dot matches the newline character as 
well

(The.Dot)s

The Dot



  

● The Dot matches the newline character as 
well

(The.Dot)s

The Dot

The Dot ✓



  

● The Dot matches the newline character as 
well

(The.Dot)s

The Dot

The Dot

The:Dot

✓
✓



  

● The Dot matches the newline character as 
well

(The.Dot)s

The Dot

The Dot

The:Dot

The↵
Dot

✓
✓

✓



  

 

Character 
Classes



  

Character Classes

● Character classes define a Set of 
arbitrary characters

a  b  c  d  e  f



  

a  b  c  d  e  f

Character Classes



  

● No delimiters between characters

abcdef

Character Classes



  

● No delimiters between characters
● Enclosed by square brackets ([])

[abcdef]

Character Classes



  

● No delimiters between characters
● Enclosed by square brackets ([])
● Character Classes are treated as one 

character

([abcdef]+)

Character Classes



  

● Ranges can be defined

([a-f]+)

Character Classes



  

● Ranges can be defined
● One Character Class may contain multiple 

Ranges

([a-cd-f]+)

Character Classes



  

● Metacharacters loose their special meaning

([abc.]+)

Character Classes



  

● Metacharacters loose their special meaning
● New Metacharacters exist

([abc.-]+)

Character Classes



  

● A Character Class can be negated

([^abcdef]+)

Character Classes



  

● A Character Class can be negated
● The newline character is part of the negation

([^abcdef]+)

Character Classes



  

● A Character Class can be negated
● The newline character is part of the negation
● The newline character can be excluded

([^\n]+)

Character Classes



  

● Predefined Character classes exist
● \d Every digit (0,1,2,…)
● \s Every whitespace (<Space>, <Tab>, …)
● …

● Capitol letters negate the class
● \D Everything but digits
● …

Character Classes
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Alternatives

● Logical OR

(Open|Source)



  

Alternatives

● Logical OR

(Open|Source)

Open



  

Alternatives

● Logical OR

(Open|Source)

Open ✓



  

Alternatives

● Logical OR

(Open|Source)

Open

Source
✓
✓



  

Alternatives

● Logical OR

(Open|Source)

Open

Source

Open Source

✓
✓



  

Alternatives

● Logical OR

(Open|Source)

Open

Source

Open Source

✓
✓
✓
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Escaping

● Special meaning of Metacharacters can 
be disabled (Escaping)

jakob.westhoff@gmail.com



  

Escaping

● Special meaning of Metacharacters can  
be disabled (Escaping)

(jakob.westhoff@gmail.com)i



  

Escaping

● Special meaning of Metacharacters can  
be disabled (Escaping)

● This is a real dot not the Metacharacter, 
which represents any character

(jakob.westhoff@gmail.com)i



  

Escaping

● Special meaning of Metacharacters can  
be disabled (Escaping)

● Using the Backslash to defuse 
Metacharacters (\)

(jakob\.westhoff@gmail\.com)i



  

Escaping

● Works for any Metacharacter

(\[ \])i



  

Escaping

● Works for any Metacharacter

(\*)i



  

Escaping

● Works for any Metacharacter

(\( \))i



  

Escaping

● Works for any Metacharacter

(\+)i



  

Escaping

● Works for any Metacharacter

…



  

Escaping

● If you need a real backslash (\) you need 
to escape it as well

([a-z]+\\[0-9]+)i



  

Escaping in the real world

● Usually Regular Expressions are strings

"(jakob\.westhoff@gmail\.com)i"



  

● Usually strings have their own escaping 
rules

"\n \" \t"

Escaping in the real world



  

● Backslashes (\) in a Regular Expression 
string must be escaped themselves

"(jakob\\.westhoff@gmail\\.com)i"

Escaping in the real world



  

● What does this RegExp string match?

"('([^\\\\']+|\\\\\\\\|\\\\')+')"

Escaping in the real world



  

 

Escaping in the real world

"('([^\\\\']+|\\\\\\\\|\\\\')+')"



  

 

Escaping in the real world

"('([^\\\\']+|\\\\\\\\|\\\\')+')"

('([^\\']+|\\\\|\\')+')

● After the string escaping has been applied

 



  

 

Escaping in the real world

"('([^\\\\']+|\\\\\\\\|\\\\')+')"

('([^\\']+|\\\\|\\')+')

● After the string escaping has been applied

● Logical Or 



  

 

Escaping in the real world

"('([^\\\\']+|\\\\\\\\|\\\\')+')"

('([^\\']+|\\\\|\\')+')

● After the string escaping has been applied

● Character class containing everything but the 
backslash (\) or the single quote (') 



  

 

Escaping in the real world

"('([^\\\\']+|\\\\\\\\|\\\\')+')"

('([^\\']+|\\\\|\\')+')

● After the string escaping has been applied

● Two real backslashes (\\)



  

 

Escaping in the real world

"('([^\\\\']+|\\\\\\\\|\\\\')+')"

('([^\\']+|\\\\|\\')+')

● After the string escaping has been applied

● Backslash (\) followed by a single quote (')



  

 

Escaping in the real world

"('([^\\\\']+|\\\\\\\\|\\\\')+')"

● But what does it match?



  

 

Escaping in the real world

"('([^\\\\']+|\\\\\\\\|\\\\')+')"

● But what does it match?

'A single quoted string, 
with \'escaped\' single quotes and 

\\backslashes\\'



  

 

Escaping in the real world

"('([^\\\\']+|\\\\\\\\|\\\\')+')"

● But what does it match?

'A single quoted string, 
with \'escaped\' single quotes and 

\\backslashes\\'
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Anchors

● Anchors are part of the family of 
Assertions in Regular Expressions

● They are used to assert certain 
conditions without afecting the match

● Anchors: Beginning and end of the 
Subject



  

● ^ Beginning of the Subject
● $ End of the Subject

Anchors



  

● ^ Beginning of the Subject
● $ End of the Subject

(Apple)i

Anchors



  

● ^ Beginning of the Subject
● $ End of the Subject

(Apple)i

Apple

Anchors



  

● ^ Beginning of the Subject
● $ End of the Subject

(Apple)i

Apple ✓

Anchors



  

● ^ Beginning of the Subject
● $ End of the Subject

(Apple)i

Apple ✓
Pineapple

Anchors



  

● ^ Beginning of the Subject
● $ End of the Subject

(Apple)i

Apple ✓
Pineapple

Anchors

✓



  

● ^ Beginning of the Subject
● $ End of the Subject

(^Apple)i

Apple ✓
Pineapple ✘

Anchors



  

Anchor (Modifier)

● Multiline Mode
● Modifier m

● Anchors match the beginning and the 
end of each line inside the subject

(^abcdef$)m



  

(^abcdef$)

abcdef↵
ghijkl↵
mnopqr

Anchor (Modifier)



  

● No match, as the anchors match the 
beginning and the end of the subject

(^abcdef$)

abcdef↵
ghijkl↵
mnopqr

Anchor (Modifier)



  

● Anchors now match the beginning and 
end of every line inside the subject

(^abcdef$)m

abcdef↵
ghijkl↵
mnopqr

Anchor (Modifier)



  

Anchors

Multiline mode (m) independent anchors

● \A Beginning of subject
● \z End of subject



  

● End only Mode
● Modifier D

● $ only matches the “real” end of the 
subject 
● Usually a newline is allowed at the end of the 

subject

(^abcdef$)D

Anchor (Modifier)



  

 

Subpattern



  

Subpattern

● Pattern can be divided using parenthesis

((abc)(def))

abcdef



  

Subpattern

● Pattern can be divided using parenthesis

((abc)(def))

abcdef



  

Subpattern

● Pattern can be divided using parenthesis

● Subpatterns may be used to extract parts of 
the match

((abc)(def))

abcdef

1:abc    2:def



  

Subpattern

● Subpattern matches may be reused inside 
the pattern itself

((a.c)\1)

abcabc ✓



  

Subpattern

● Subpattern matches may be reused inside 
the pattern itself

((a.c)\1)

abcabc

abcaXc
✓
✘



  

Subpattern Options

● Subpattern may be used to set 
options/modifiers for a certain area of the 
Regular Expression

((?#I am a comment subpattern.))



  

Subpattern Options

● Setting options for a subpattern

● Abstract syntax for any option

(?OptionPattern)



  

Subpattern Options

((?i)[a-z]+)

● Setting the case-insensitive modifier using a 
subpattern option



  

Subpattern Options

((?i)[a-z]+)

Jakob Westhoff

● Setting the case-insensitive modifier using a 
subpattern option



  

Subpattern Options

((?i)[a-z]+)

Jakob Westhoff

● Setting the case-insensitive modifier using a 
subpattern option

✓



  

Named Subpattern

● Subpatterns may be named

● The P Option is used for naming subpatterns

((?P<firstname>Jakob))



  

Named Subpattern

((?P<firstname>Jakob) (Westhoff))



  

Named Subpattern

((?P<firstname>Jakob) (Westhoff))

Jakob Westhoff



  

Named Subpattern

((?P<firstname>Jakob) (Westhoff))

Jakob Westhoff



  

Named Subpattern

● Access to extraction using the subpatterns 
name is possible

((?P<firstname>Jakob) (Westhoff))

Jakob Westhoff

firstname:Jakob



  

Non grouping Subpattern

● Subpattern can be used without being a 
group

● The question mark followed by a colon (?:) 
creates a non grouping subpattern

((?:Jakob))



  

 

Readability



  

Readable Regular Expressions

● Comments, indentation and line feeds in 
Regular Expressions
● Modifier x

(foobar)x



  

Readable Regular Expressions

 

(^[a-z0-9_%.-]+@[a-z0-9.-]+\.[a-z]{2,4}$)iD

Easy to read?   Easy to maintain?



  

Readable Regular Expressions

(
  ^              #Start of the Subject
  [a-z0-9_%.-]+  #User
  @              #Delimiter @
  [a-z0-9.-]+    #Domain
  \.             #Delimiter .
  [a-z]{2,4}     #TLD
  $              #End of the Subject
)iDx

That's better :)



  

Readable Regular Expressions

● Use newlines where you see fit

(
  ^              #Start of the Subject
  [a-z0-9_%.-]+  #User
  @              #Delimiter @
  [a-z0-9.-]+    #Domain
  \.             #Delimiter .
  [a-z]{2,4}     #TLD
  $              #End of the Subject
)iDx



  

Readable Regular Expressions

● Everything starting with a # until the end 
of line is considered a comment

(
  ^              #Start of the Subject
  [a-z0-9_%.-]+  #User
  @              #Delimiter @
  [a-z0-9.-]+    #Domain
  \.             #Delimiter .
  [a-z]{2,4}     #TLD
  $              #End of the Subject
)iDx



  

Readable Regular Expressions

● All whitespaces are ignored if they are 
not escaped (\ )

(
  ^              #Start of the Subject
  [a-z0-9_%.-]+  #User
  @              #Delimiter @
  [a-z0-9.-]+    #Domain
  \.             #Delimiter .
  [a-z]{2,4}     #TLD
  $              #End of the Subject
)iDx



  

Thanks for your attention.

Jakob Westhoff
Mail:    jakob@qafoo.com
Twitter: @jakobwesthoff

https://joind.in/6075

mailto:jakob@qafoo.com
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