

Understanding
Regular Expressions

Confoo 2012

Jakob Westhoff

About Me

Jakob Westhof

About Me

Jakob Westhof

About Me
Jakob Westhof

● PHP Professional since
2001

● JavaScript Professional
since 2006

● Trainer and Consultant
● Author of articles and a

book
● Regular speaker at

technology conferences

Terminology

Terminology

RegExp

Subject

Match

Terminology

RegExp

● Pattern
● Describes an arbitrary amount of strings

● Modifier
● Processing instructions

Terminology

Subject

● Subject
● One string which a RegExp is applied to

Terminology

Match

● Match
● Part of the Subject which has been matched

by the Regular Expression

Engine
Flavors

● Diferent languages utilize diferent
Regular Expression engines

● PHP (PCRE)
● Java
● Python
● Ruby
● JavaScript

...

Diferent RegExp Engines

● Diferent languages utilize diferent
Regular Expression engines

● PHP (PCRE)
● Java
● Python
● Ruby
● JavaScript

...

Diferent RegExp Engines

RegExp

Basic structure of a RegExp

/foobar/i

/foobar/i

● Delimiter
● Enclosure of Pattern
● Divider between Pattern and Modifier

Basic structure of a RegExp

(foobar)i

● Delimiter
● PCRE allows arbitrary Brackets

– () [] {}

Basic structure of a RegExp

RegExp – Just a String

● The RegExp Pattern is just a simple String

Techno

(Techno)

RegExp – Just a String

● The RegExp Pattern is just a simple String

● The RegExp Pattern is just a simple String

(Techno)

Web Techno Conference

RegExp – Just a String

● The RegExp Pattern is just a simple String

● The Pattern has to occur at least once
● The Position inside the subject is not relevant

(Techno)

Web Techno Conference

RegExp – Just a String

Metacharacters

● Certain characters inside a RegExp
Pattern have got a special meaning

([We]b \s* Te+c.no)

Quantifier

Quantifier

● Quantifiers specify Repetitions of the
previous character or group

(We*b Te+ch?n{1,3}o)

Quantifier

● Quantifiers specify Repetitions of the
previous character or group

● * Any number of occurrences (0 → ∞)

(We*b Te+ch?n{1,3}o)

Quantifier

● Quantifiers specify Repetitions of the
previous character or group

● * Any number of occurrences (0 → ∞)
● + One occurrence minimum (1 → ∞)

(We*b Te+ch?n{1,3}o)

Quantifier

● Quantifiers specify Repetitions of the
previous character or group

● * Any number of occurrences (0 → ∞)
● + One occurrence minimum (1 → ∞)
● ? Not at all or one time (0 → 1)

(We*b Te+ch?n{1,3}o)

Quantifier

● Quantifiers specify Repetitions of the
previous character or group

● * Any number of occurrences (0 → ∞)
● + One occurrence minimum (1 → ∞)
● ? Not at all or one time (0 → 1)
● {x,y} Between x and y (x → y)

(We*b Te+ch?n{1,3}o)

The Dot

The Dot

● The Dot (.) matches any character
● Everything except newline

(Make a .oint)

The Dot

● The Dot (.) matches any character
● Everything except newline

(Make a .oint)

Make a point ✓

The Dot

● The Dot (.) matches any character
● Everything except newline

(Make a .oint)

Make a point ✓
Make a joint ✓

The Dot

● The Dot (.) matches any character
● Everything except newline

(Make a .oint)

Make a point ✓
Make a joint ✓
Make a _oint ✓

The Dot

● Switch to single line mode
● Modifier s

● The Dot matches the newline character as
well

(The.Dot)s

● The Dot matches the newline character as
well

(The.Dot)s

The Dot

● The Dot matches the newline character as
well

(The.Dot)s

The Dot

The Dot ✓

● The Dot matches the newline character as
well

(The.Dot)s

The Dot

The Dot

The:Dot

✓
✓

● The Dot matches the newline character as
well

(The.Dot)s

The Dot

The Dot

The:Dot

The↵
Dot

✓
✓

✓

Character
Classes

Character Classes

● Character classes define a Set of
arbitrary characters

a b c d e f

a b c d e f

Character Classes

● No delimiters between characters

abcdef

Character Classes

● No delimiters between characters
● Enclosed by square brackets ([])

[abcdef]

Character Classes

● No delimiters between characters
● Enclosed by square brackets ([])
● Character Classes are treated as one

character

([abcdef]+)

Character Classes

● Ranges can be defined

([a-f]+)

Character Classes

● Ranges can be defined
● One Character Class may contain multiple

Ranges

([a-cd-f]+)

Character Classes

● Metacharacters loose their special meaning

([abc.]+)

Character Classes

● Metacharacters loose their special meaning
● New Metacharacters exist

([abc.-]+)

Character Classes

● A Character Class can be negated

([^abcdef]+)

Character Classes

● A Character Class can be negated
● The newline character is part of the negation

([^abcdef]+)

Character Classes

● A Character Class can be negated
● The newline character is part of the negation
● The newline character can be excluded

([^\n]+)

Character Classes

● Predefined Character classes exist
● \d Every digit (0,1,2,…)
● \s Every whitespace (<Space>, <Tab>, …)
● …

● Capitol letters negate the class
● \D Everything but digits
● …

Character Classes

Alternatives

Alternatives

● Logical OR

(Open|Source)

Alternatives

● Logical OR

(Open|Source)

Open

Alternatives

● Logical OR

(Open|Source)

Open ✓

Alternatives

● Logical OR

(Open|Source)

Open

Source
✓
✓

Alternatives

● Logical OR

(Open|Source)

Open

Source

Open Source

✓
✓

Alternatives

● Logical OR

(Open|Source)

Open

Source

Open Source

✓
✓
✓

Escaping

Escaping

● Special meaning of Metacharacters can
be disabled (Escaping)

jakob.westhoff@gmail.com

Escaping

● Special meaning of Metacharacters can
be disabled (Escaping)

(jakob.westhoff@gmail.com)i

Escaping

● Special meaning of Metacharacters can
be disabled (Escaping)

● This is a real dot not the Metacharacter,
which represents any character

(jakob.westhoff@gmail.com)i

Escaping

● Special meaning of Metacharacters can
be disabled (Escaping)

● Using the Backslash to defuse
Metacharacters (\)

(jakob\.westhoff@gmail\.com)i

Escaping

● Works for any Metacharacter

(\[\])i

Escaping

● Works for any Metacharacter

(*)i

Escaping

● Works for any Metacharacter

(\(\))i

Escaping

● Works for any Metacharacter

(\+)i

Escaping

● Works for any Metacharacter

…

Escaping

● If you need a real backslash (\) you need
to escape it as well

([a-z]+\\[0-9]+)i

Escaping in the real world

● Usually Regular Expressions are strings

"(jakob\.westhoff@gmail\.com)i"

● Usually strings have their own escaping
rules

"\n \" \t"

Escaping in the real world

● Backslashes (\) in a Regular Expression
string must be escaped themselves

"(jakob\\.westhoff@gmail\\.com)i"

Escaping in the real world

● What does this RegExp string match?

"('([^\\\\']+|\\\\\\\\|\\\\')+')"

Escaping in the real world

Escaping in the real world

"('([^\\\\']+|\\\\\\\\|\\\\')+')"

Escaping in the real world

"('([^\\\\']+|\\\\\\\\|\\\\')+')"

('([^\\']+|\\\\|\\')+')

● After the string escaping has been applied

Escaping in the real world

"('([^\\\\']+|\\\\\\\\|\\\\')+')"

('([^\\']+|\\\\|\\')+')

● After the string escaping has been applied

● Logical Or

Escaping in the real world

"('([^\\\\']+|\\\\\\\\|\\\\')+')"

('([^\\']+|\\\\|\\')+')

● After the string escaping has been applied

● Character class containing everything but the
backslash (\) or the single quote (')

Escaping in the real world

"('([^\\\\']+|\\\\\\\\|\\\\')+')"

('([^\\']+|\\\\|\\')+')

● After the string escaping has been applied

● Two real backslashes (\\)

Escaping in the real world

"('([^\\\\']+|\\\\\\\\|\\\\')+')"

('([^\\']+|\\\\|\\')+')

● After the string escaping has been applied

● Backslash (\) followed by a single quote (')

Escaping in the real world

"('([^\\\\']+|\\\\\\\\|\\\\')+')"

● But what does it match?

Escaping in the real world

"('([^\\\\']+|\\\\\\\\|\\\\')+')"

● But what does it match?

'A single quoted string,
with \'escaped\' single quotes and

\\backslashes\\'

Escaping in the real world

"('([^\\\\']+|\\\\\\\\|\\\\')+')"

● But what does it match?

'A single quoted string,
with \'escaped\' single quotes and

\\backslashes\\'

Anchors

Anchors

● Anchors are part of the family of
Assertions in Regular Expressions

● They are used to assert certain
conditions without afecting the match

● Anchors: Beginning and end of the
Subject

● ^ Beginning of the Subject
● $ End of the Subject

Anchors

● ^ Beginning of the Subject
● $ End of the Subject

(Apple)i

Anchors

● ^ Beginning of the Subject
● $ End of the Subject

(Apple)i

Apple

Anchors

● ^ Beginning of the Subject
● $ End of the Subject

(Apple)i

Apple ✓

Anchors

● ^ Beginning of the Subject
● $ End of the Subject

(Apple)i

Apple ✓
Pineapple

Anchors

● ^ Beginning of the Subject
● $ End of the Subject

(Apple)i

Apple ✓
Pineapple

Anchors

✓

● ^ Beginning of the Subject
● $ End of the Subject

(^Apple)i

Apple ✓
Pineapple ✘

Anchors

Anchor (Modifier)

● Multiline Mode
● Modifier m

● Anchors match the beginning and the
end of each line inside the subject

(^abcdef$)m

(^abcdef$)

abcdef↵
ghijkl↵
mnopqr

Anchor (Modifier)

● No match, as the anchors match the
beginning and the end of the subject

(^abcdef$)

abcdef↵
ghijkl↵
mnopqr

Anchor (Modifier)

● Anchors now match the beginning and
end of every line inside the subject

(^abcdef$)m

abcdef↵
ghijkl↵
mnopqr

Anchor (Modifier)

Anchors

Multiline mode (m) independent anchors

● \A Beginning of subject
● \z End of subject

● End only Mode
● Modifier D

● $ only matches the “real” end of the
subject
● Usually a newline is allowed at the end of the

subject

(^abcdef$)D

Anchor (Modifier)

Subpattern

Subpattern

● Pattern can be divided using parenthesis

((abc)(def))

abcdef

Subpattern

● Pattern can be divided using parenthesis

((abc)(def))

abcdef

Subpattern

● Pattern can be divided using parenthesis

● Subpatterns may be used to extract parts of
the match

((abc)(def))

abcdef

1:abc 2:def

Subpattern

● Subpattern matches may be reused inside
the pattern itself

((a.c)\1)

abcabc ✓

Subpattern

● Subpattern matches may be reused inside
the pattern itself

((a.c)\1)

abcabc

abcaXc
✓
✘

Subpattern Options

● Subpattern may be used to set
options/modifiers for a certain area of the
Regular Expression

((?#I am a comment subpattern.))

Subpattern Options

● Setting options for a subpattern

● Abstract syntax for any option

(?OptionPattern)

Subpattern Options

((?i)[a-z]+)

● Setting the case-insensitive modifier using a
subpattern option

Subpattern Options

((?i)[a-z]+)

Jakob Westhoff

● Setting the case-insensitive modifier using a
subpattern option

Subpattern Options

((?i)[a-z]+)

Jakob Westhoff

● Setting the case-insensitive modifier using a
subpattern option

✓

Named Subpattern

● Subpatterns may be named

● The P Option is used for naming subpatterns

((?P<firstname>Jakob))

Named Subpattern

((?P<firstname>Jakob) (Westhoff))

Named Subpattern

((?P<firstname>Jakob) (Westhoff))

Jakob Westhoff

Named Subpattern

((?P<firstname>Jakob) (Westhoff))

Jakob Westhoff

Named Subpattern

● Access to extraction using the subpatterns
name is possible

((?P<firstname>Jakob) (Westhoff))

Jakob Westhoff

firstname:Jakob

Non grouping Subpattern

● Subpattern can be used without being a
group

● The question mark followed by a colon (?:)
creates a non grouping subpattern

((?:Jakob))

Readability

Readable Regular Expressions

● Comments, indentation and line feeds in
Regular Expressions
● Modifier x

(foobar)x

Readable Regular Expressions

(^[a-z0-9_%.-]+@[a-z0-9.-]+\.[a-z]{2,4}$)iD

Easy to read? Easy to maintain?

Readable Regular Expressions

(
 ^ #Start of the Subject
 [a-z0-9_%.-]+ #User
 @ #Delimiter @
 [a-z0-9.-]+ #Domain
 \. #Delimiter .
 [a-z]{2,4} #TLD
 $ #End of the Subject
)iDx

That's better :)

Readable Regular Expressions

● Use newlines where you see fit

(
 ^ #Start of the Subject
 [a-z0-9_%.-]+ #User
 @ #Delimiter @
 [a-z0-9.-]+ #Domain
 \. #Delimiter .
 [a-z]{2,4} #TLD
 $ #End of the Subject
)iDx

Readable Regular Expressions

● Everything starting with a # until the end
of line is considered a comment

(
 ^ #Start of the Subject
 [a-z0-9_%.-]+ #User
 @ #Delimiter @
 [a-z0-9.-]+ #Domain
 \. #Delimiter .
 [a-z]{2,4} #TLD
 $ #End of the Subject
)iDx

Readable Regular Expressions

● All whitespaces are ignored if they are
not escaped (\)

(
 ^ #Start of the Subject
 [a-z0-9_%.-]+ #User
 @ #Delimiter @
 [a-z0-9.-]+ #Domain
 \. #Delimiter .
 [a-z]{2,4} #TLD
 $ #End of the Subject
)iDx

Thanks for your attention.

Jakob Westhoff
Mail: jakob@qafoo.com
Twitter: @jakobwesthoff

https://joind.in/6075

mailto:jakob@qafoo.com

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Folie 39
	Folie 40
	Folie 41
	Folie 42
	Folie 43
	Folie 44
	Folie 45
	Folie 46
	Folie 47
	Folie 48
	Folie 49
	Folie 50
	Folie 51
	Folie 52
	Folie 53
	Folie 54
	Folie 55
	Folie 56
	Folie 57
	Folie 58
	Folie 59
	Folie 60
	Folie 61
	Folie 62
	Folie 63
	Folie 64
	Folie 65
	Folie 66
	Folie 67
	Folie 68
	Folie 69
	Folie 70
	Folie 71
	Folie 72
	Folie 73
	Folie 74
	Folie 75
	Folie 76
	Folie 77
	Folie 78
	Folie 79
	Folie 80
	Folie 81
	Folie 82
	Folie 83
	Folie 84
	Folie 85
	Folie 86
	Folie 87
	Folie 88
	Folie 89
	Folie 90
	Folie 91
	Folie 92
	Folie 93
	Folie 94
	Folie 95
	Folie 96
	Folie 97
	Folie 98
	Folie 99
	Folie 100
	Folie 101
	Folie 102
	Folie 103
	Folie 104
	Folie 105
	Folie 106
	Folie 107
	Folie 108
	Folie 109
	Folie 110
	Folie 111
	Folie 112
	Folie 113
	Folie 114
	Folie 115
	Folie 116
	Folie 117
	Folie 118
	Folie 119
	Folie 120
	Folie 121
	Folie 122
	Folie 123
	Folie 124

