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Goals of this session

v

Motivation for dependency management

v

CommondJS Modules

v

The asynchronous dilemma

v

Solutions to asynchronous module loading

v

Building applications for deployment
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Dependency Management - Motivation

\{

Webapplications (Rich internet applications) codebases are
growing

v

Projects consist of multiple files

v

Usage of external libraries gets more important every day

v

Different builds are required for different platforms (Desktop,
Mobile, Legacy, ...)
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Dependency Management - Idea

» Code is structured into smaller units

» Packages
» Modules
» Prototypes ("Classes”)
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Dependency Management - Idea

» Code is structured into smaller units

» Packages
> Modules
» Prototypes ("Classes”)

» Dependencies are defined by each unit

» Automated buildsystems integrate all needed units into one
application
» Dynamically (inside the browser)
» Statically (during a build step)
» Mixture of both
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CommondS

» CommondS
» Started in 2009
» Goal: Specifying APIs for a JavaScript Eco System for more
than only the browser
» Open proposal process (Mailinglist)
» Specifications only considered final after several
implementations
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CommondS specifications

» Current specifications

» Modules (require)
» Packages (package. json)
» System (stdin, stdout, ...)
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CommondJS - require

v

Specification for interoperable modules

v

Isolated private scope for each module

v

Possibility to import other modules using a custom name

v

Possibility to export certain objects/functions for use in other
modules

v

Flexible implementation of look up logic to locate modules
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CommondS - require

» Free variable exports and require available in any module

function add(lhs, rhs) {
return |hs + rhs;

}

function increment(lhs) {
return add(lhs, 1);
}

exports.inc = increment
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CommondS - require

» Free variable exports and require available in any module

function add(lhs, rhs) { var incMod =
return |hs + rhs; require ('increment’);
}
incMod.inc (41) // 42
function increment(lhs) {

return add(lhs, 1); /' or
}
var inc =
exports.inc = increment require ('increment’).inc;
inc(41) // 42
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CommondS - require

» Free variable module can be used to override exports
completely (Not actually specified)

function add(lhs, rhs) {
return |hs + rhs;

}

function increment(lhs) {
return add(lhs, 1);

}

module. exports = increment;

Dependency Management




CommondS - require

» Free variable module can be used to override exports
completely (Not actually specified)

function add(lhs, rhs) { var inc =

return |hs + rhs; require('increment’);

}

inc(41) // 42
function increment(lhs) {

return add(lhs, 1);
}

module. exports = increment;
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Challenges of require

» Determine list of Modules to load
» Lazy loading?
» Recursive search
» Locate modules in the filesystem, database, $storage

» Absolute path
> Relative to the requireing module
> Include path?
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require on the server-side

» Files can be loaded and evaluated synchronously

» Modules are identified and initialized during runtime
» require can be a synchronous action without any callback.

» Modules filepath is known for relative based resolving

» Some sort of include path can be checked for module if direct
resolving failed.
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require inside the browser

» Lazy loading
» Modules need to be fetched asynchronously
» Synchronous require calls can’t be used

» Eager loading
» Fetch every needed module before executing the application
» May load and evaluate more JavaScript code than needed
> Needs static dependency analysis during some build step
» Works with synchronous require calls
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What comes next?

Asynchronous Module
Definition API
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Asynchronous Module Definition APl (AMD)

v

Extracted from CommonJS Transport/C

v

API specifying an asynchronous way of declaring modules

v

Aimed at systems like browsers, who can’t request modules
synchronously

v

Can be used as a transport for already available CommonJS
modules

» Needs some sort of preprocessing
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Asynchronous Module Definition APl (AMD)

» Extracted from CommondJS Transport/C
» API specifying an asynchronous way of declaring modules

» Aimed at systems like browsers, who can’t request modules
synchronously

» Can be used as a transport for already available CommondS
modules

» Needs some sort of preprocessing

» Only a specification not a real implementation
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AMD - define

» Global function define has to be made available by any
implementation

» define([id], [dependencies], factory)

define (
"hello”’,
[ "writer '],
function( writer ) {
return {
"hello’: function() {
writer.writeln( "Hello_World” );

}

)
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AMD in the wild

» Full specification available online
» https://github.com/amdjs/amdjs-api/wiki/AMD

> A lot of different libraries are starting to support AMD:
> jQuery
» MooTools
» Dojo

> an

» NodedS and Browser implementations exist
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https://github.com/amdjs/amdjs-api/wiki/AMD

AMD - other cool aspects

» Simple CommondJS Wrapper Syntax

» Support for special LoaderObjects

» Load in evaluate resources in a special way (templates, json,
coffee-script)
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CommondJS Wrapper Syntax

» CommondJS Modules are using special variables/functions to
handle requirements

> require
> exports
> module

» Possibility to use CommondJS Modules inside the browser
desirable
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CommondJS Wrapper Syntax

» Problem: Synchronous calling behaviour
» require immediately returns the requested module

» Solution: Asynchronous wrapper + a little bit of magic

» Async wrapper around require, exports, module
» Static code analysis of module to isolate needed dependencies
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CommondS Wrapper Syntax - Example

var otherModule = require( 'otherModule ") ;

function add(a, b) {
return a + b;

}
function inc(value) {
return value + 1;

}

exports.inc = inc;
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CommondS Wrapper Syntax - Example

define (function (require , exports, module ){
var otherModule = require( otherModule ") ;

function add(a, b) {
return a + b;

}

function inc(value) {
return value + 1;

}
exports.inc = inc;
b)) ¢
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Using CommondJS Modules

» A great amount of CommonJS modules can be used
» Wrapping process can be automated

> A lot of people always use the wrapped syntax, as they find it
more readable
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Limitations of Wrapped Syntax

» The wrapped syntax has certain limitations
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Limitations of Wrapped Syntax

» The wrapped syntax has certain limitations

» Non static require dependencies can't be resolved
» var foo = require(["path", "file"].join("/");
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Limitations of Wrapped Syntax

» The wrapped syntax has certain limitations

» Non static require dependencies can't be resolved
» var foo = require(["path", "file"].join("/");

» Modules can’t be given an arbitrary name
» The name is given by their filepath
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AMD - other cool aspects

» Simple CommondJS Wrapper Syntax

» Support for special LoaderObjects

» Load in evaluate resources in a special way (templates, json,
coffee-script)
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» Simple CommondJS Wrapper Syntax

» Support for special LoaderObjects

» Load in evaluate resources in a special way (templates, json,
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Loader objects

» Other assets need async and dependency management as
well

» Coffee-Script
» JSON documents
» Text (templates, css, ...)

» AMD Loader objects are the solution to this requirement
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Loader objects

» Loader objects provide JavaScript unspecific loading code
» They can be used whenever a dependency name is required

» Syntax: loader-name!identifier
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Loader objects

» Loader objects provide JavaScript unspecific loading code
» They can be used whenever a dependency name is required

» Syntax: loader-name!identifier

var data = require(’json!/some/json/data.json’);

var module = require(’'coffee !some/coffee/module’);
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Creating your own Loader object

» Custom loader objects can easily be created and registered
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Creating your own Loader object

» Custom loader objects can easily be created and registered

1. Define a module as usual
» The module name will be the loader name

2. Export a load function from the module
» load: function(name, req, load, config)

3. Optionally export: normalize or write
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Creating your own Loader object

» A string loader
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Creating your own Loader object

» A string loader (completely useless ;)
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Creating your own Loader object

» A string loader (completely useless ;)

define (
"string”,
{
load: function(name, req, load, config) {
// Simply return the given name/string
load (name) ;
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Require.js

\4

Implementation of the AMD specification

v

Small footprint (5,8kb)

v

Well documented

v

Quite feature complete optimizer (r.js)

Node.js AMD bridge

v

v

Vast amount of LoaderObjects

Dependency Management
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Using requirejs

» Create an application conforming to the AMD spec

» Download the require. js loader from
http://requirejs.org
» Add require. js to your main application html
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Using requirejs

v

Create an application conforming to the AMD spec
Download the require. js loader from
http://requirejs.org

Add require. js to your main application html

\4

v

v

Require.js will take it from here
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File structure

For Require.js to work properly you need a certain file structure

application-directory
» index.html
> CSs
> ..
> scripts
> require.js
» main.js

modulel. js
subfolder

> module2.js

v

v
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File structure

For Require.js to work properly you need a certain file structure

application-directory
» index.html
> CSs
> ..
» scripts
» require.js
» main.js

» modulel. js
» subfolder

» module2.js
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Require.js - Loading the library

» Loading require. js into your application context

<htmli>
<head>
<script data—main="scripts/main”
src="scripts/require.js ">
</script>
</head>
<body> . ..</body>
</html>
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Require.js - Loading the library
» Loading require. js into your application context

<html>
<head>
<script data—main="scripts/main”
src="scripts/require.js”’>
</script>
</head>
<body> . .. </body>
</html>

> You should only provide one application entry point
» Specify the entry point using data-main
» This allows for easier usage of the optimizer later on

Dependency Management 33/48




Require.js - An example

» A project consisting of 4 files:

File: scripts/main.js

require ([ 'a’, 'b’], function(a, b) {
1

File: scripts/a.js

require ([ 'c’], function(c) {

1

File: scripts/b.js

require ([ 'c’], function(c) {

1

File: scripts/c.js

require ([], function() {
1

Dependency Management
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Require.js - An example

» Graphical representation of example dependencies
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Require.js - An example

Name Status size Time

Path Method |Text |Type |lnitiator y | Timeline g...s| sms tams|  zims 26ms 3u-s| sams 35ms
indextmi 1ms

S e [GETsuccess cexgmm - otver Goma. 1™ @
requirejs index b7 1ms

& oot GET Successtextfav..  poes (from ca... e =

e . ot require.s 1888 o8 1ms
Jusers/iakot ccess @i oo az8 o
ajs require.s:1388 o 3ms

= Jusersjiakot | °ET Success - textlian g 348 )
bis require5:1384 o 2ms

| Jusersyiakot | °FT Success - textlian g 348 o o
cis require.s:1388 o 2ms

Jusersjiakot | °ET Success - textlian g 308 )

Dependency Management

36/48




What comes next?

r.js
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Disadvantages of AMD in production use

v

Dynamic loading of resources is nice during development

v

It's mostly catasthropic for production use

v

The application should be packaged into one or multiple
bigger modules

Packages should be properly minified and/or compressed

\4
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Disadvantages of AMD in production use

v

Dynamic loading of resources is nice during development

v

It's mostly catasthropic for production use

v

The application should be packaged into one or multiple
bigger modules

Packages should be properly minified and/or compressed

\4

r. js automatically does that for AMD
modules
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r.js - The optimizer

» r.jsis part of require. js

Compatible with all AMD conform implementations

Allows for automatic dependency tracing, combining and
minification

Extensibly configurable to include non AMD modules as well

Split your app into a defined set of packages and auto
generate them

v

v

\{

v

Dependency Management
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Optimizing the a,b,c example

» Remember the example utilizing the a, b and c modules?
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Optimizing the a,b,c example

» Before optimization can be done a lean configuration for r. js
is needed

» The configuration can be placed anywhere inside or outside
the application tree

» Only the paths inside the configuration need match your
project

Dependency Management 40/ 48




Optimizing the a,b,c example

» Configuration for our a, b, c example project
» Named app.build.config and placed at the project root

(!
appDir: ./,
baseUrl: ’scripts’,
dir: ‘build’,
modules: [
{
name: 'main’,
1,
]
1)
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Optimizing the a,b,c example

» After creating a configuration simply run r. js with it

r.js —o app.build.config
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Optimizing the a,b,c example

» After creating a configuration simply run r. js with it

r.js —o app.build.config

Tracing dependencies for: main

Uglifying file: /Users/jakob/playground/requirejs/build/app.build.js
Uglifying file: /Users/jakob/playground/requirejs/build/scripts/a.js
Uglifying file: /Users/jakob/playground/requirejs/build/scripts/b.js
Uglifying file: /Users/jakob/playground/requirejs/build/scripts/c.js
Uglifying file: /Users/jakob/playground/requirejs/build/scripts/main.js
Uglifying file: /Users/jakob/playground/requirejs/build/scripts/require.js

scripts/main. js
scripts/c.js
scripts/a.js
scripts/b.js
scripts/main.js
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Optimizing the a,b,c example

» r.js creates a copy of the whole project including any
resource

» Including the build main. js with resolved and embedded
dependencies

» Simply open the index.html from the build folder
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Optimizing the a,b,c example

» r.js creates a copy of the whole project including any
resource

» Including the build main. js with resolved and embedded
dependencies

» Simply open the index.html from the build folder

ame Meth... | Status Initiator Size Time  imeline

Path Text | TYP® Conten | Latency T i . T
index html 1ms
<q . . GET Succ text/. Other (fro o
==] /Users/jakob/playgrou 1ms
requires e s texty, Indexchimi:7 08 lms
j JUsers/jakobyplaygrou uee... 1M rser 16.11KI 0
mainjs require.[s:7 08 lms
GET s text
j JUsers/jakob/playgrou uee 2 | 5o 2328 0
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What comes next?

Alternatives
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Alternative Dependency Management tools

» Most sophisticated inner app dependency management:
require.js, r.js
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Alternative Dependency Management tools

» Most sophisticated inner app dependency management:
require.js, r.js
» Dependency management on different layers is required as
well
» External libraries
» Ressources

4 es
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Different Layer Alternatives

» npm (Node package manager)
> http://npmjs.org
» Package management utility for nodejs applications
» Installation of dependencies from package. json

» Does provide in-browser libraries like jQuery and underscore
as well

Dependency Management
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Different Layer Alternatives

» npm (Node package manager)
> http://npmjs.org
» Package management utility for nodejs applications
> Installation of dependencies from package. json
» Does provide in-browser libraries like jQuery and underscore
as well
> ender.js

> http://ender.no.de/

» npm based dependency management tool especially for
in-browser libraries

» Does include packaging and minification

» Hard to integrate with application-level dependency
management
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Different Layer Alternatives

» Bower

> http://twitter.github.com/bower

» Newly created dependency management system especially for
the in-browser resources

Manages JavaScript, CSS, HTML, ...

Like npm, but for the browser libraries

Integrates nicely with require. js

v

v

v
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Different Layer Alternatives

» Bower

> http://twitter.github.com/bower

» Newly created dependency management system especially for
the in-browser resources

Manages JavaScript, CSS, HTML, ...

Like npm, but for the browser libraries

Integrates nicely with require. js

v

v

v

» Jam

> http://jamjs.org
» Package manager for in-browser packages
» Generates needed require. js configuration automatically
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Conclusion

» Complex JavaScript applications consist of a lot of different
parts
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Conclusion

» Complex JavaScript applications consist of a lot of different
parts

» CommondS Modules provide a clean way of defining them

» Modules inside the browser have special requirements
(asynchronous loading)

» AMD is a solution to this problem

» require.js and r. js the most sophisticated solution using
AMD

» Alternatives for other levels of dependency management exist
(Bower, Jam, ...)
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Thanks for listening

Questions, comments or annotations?

Rate this talk: https://joind.in/7361

Slides: http://talks.qafoo.com

Contact: Jakob Westhoff <jakob@gafoo.com>
Follow Me: @jakobwesthoff
Hire us: http://qafoo.com
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