Dependency Management
Modules and Packages with JavaScript

Qafoo GmbH

October 25, 2012

Dependency Management 1/48

What comes next?

Dependency Management

Welcome

2/48

About Me
Jakob Westhoff

» More than 11 years of . _
professional PHP Working with
experience .

» More than 8 years of .
professional JavaScript
experience

passion for soffware quality

» Open source enthusiast

» Regular speaker at
(inter)national conferences

» Consultant, Trainer and
Author

Dependency Management 2/48

About Me
Jakob Westhoff

» More than 11 years of
professional PHP
experience

» More than 8 years of
professional JavaScript
experience

» Open source enthusiast

» Regular speaker at
(inter)national conferences

» Consultant, Trainer and
Author

Dependency Management

Working with

passion for soffware quality

We help people to create
high quality web
applications.

2/48

About Me
Jakob Westhoff

» More than 11 years of
professional PHP
experience

» More than 8 years of
professional JavaScript
experience

» Open source enthusiast

» Regular speaker at
(inter)national conferences

» Consultant, Trainer and
Author

Dependency Management

Working with

passion for soffware quality

We help people to create
high quality web
applications.

http://qafoo.com

2/48

http://qafoo.com

Goals of this session

v

Motivation for dependency management

v

CommondJS Modules

v

The asynchronous dilemma

v

Solutions to asynchronous module loading

v

Building applications for deployment

Dependency Management

5/48

What comes next?

Dependency Management

Motivation

6/48

Dependency Management - Motivation

\{

Webapplications (Rich internet applications) codebases are
growing

v

Projects consist of multiple files

v

Usage of external libraries gets more important every day

v

Different builds are required for different platforms (Desktop,
Mobile, Legacy, ...)

Dependency Management 6/48

Dependency Management - Idea

» Code is structured into smaller units

» Packages
» Modules
» Prototypes ("Classes”)

Dependency Management

7/48

Dependency Management - Idea

» Code is structured into smaller units

» Packages
» Modules
» Prototypes ("Classes”)

» Dependencies are defined by each unit

Dependency Management

7/48

Dependency Management - Idea

» Code is structured into smaller units

» Packages
> Modules
» Prototypes ("Classes”)

» Dependencies are defined by each unit

» Automated buildsystems integrate all needed units into one
application
» Dynamically (inside the browser)
» Statically (during a build step)
» Mixture of both

Dependency Management 7148

What comes next?

CommondS Modules

eeeeeeeeeeeeeeeeeeee

CommondS

» CommondS
» Started in 2009
» Goal: Specifying APIs for a JavaScript Eco System for more
than only the browser
» Open proposal process (Mailinglist)
» Specifications only considered final after several
implementations

Dependency Management 8/48

CommondS specifications

» Current specifications

» Modules (require)
» Packages (package. json)
» System (stdin, stdout, ...)

Dependency Management 9/48

CommondS specifications

» Current specifications

» Modules (require)
» Packages (package. json)
» System (stdin, stdout, ...)

Dependency Management 9/48

CommondJS - require

v

Specification for interoperable modules

v

Isolated private scope for each module

v

Possibility to import other modules using a custom name

v

Possibility to export certain objects/functions for use in other
modules

v

Flexible implementation of look up logic to locate modules

Dependency Management 10/48

CommondS - require

» Free variable exports and require available in any module

function add(lhs, rhs) {
return |hs + rhs;

}

function increment(lhs) {
return add(lhs, 1);
}

exports.inc = increment

Dependency Management 11/48

CommondS - require

» Free variable exports and require available in any module

function add(lhs, rhs) { var incMod =
return |hs + rhs; require ('increment’);
}
incMod.inc (41) // 42
function increment(lhs) {

return add(lhs, 1); /' or
}
var inc =
exports.inc = increment require ('increment’).inc;
inc(41) // 42
Dependency Management 11/48

CommondS - require

» Free variable module can be used to override exports
completely (Not actually specified)

function add(lhs, rhs) {
return |hs + rhs;

}

function increment(lhs) {
return add(lhs, 1);

}

module. exports = increment;

Dependency Management

CommondS - require

» Free variable module can be used to override exports
completely (Not actually specified)

function add(lhs, rhs) { var inc =

return |hs + rhs; require('increment’);

}

inc(41) // 42
function increment(lhs) {

return add(lhs, 1);
}

module. exports = increment;

Dependency Management

Challenges of require

» Determine list of Modules to load
» Lazy loading?
» Recursive search
» Locate modules in the filesystem, database, $storage

» Absolute path
> Relative to the requireing module
> Include path?

Dependency Management 13/48

require on the server-side

» Files can be loaded and evaluated synchronously

» Modules are identified and initialized during runtime
» require can be a synchronous action without any callback.

» Modules filepath is known for relative based resolving

» Some sort of include path can be checked for module if direct
resolving failed.

Dependency Management

14/48

require inside the browser

» Lazy loading
» Modules need to be fetched asynchronously
» Synchronous require calls can’t be used

» Eager loading
» Fetch every needed module before executing the application
» May load and evaluate more JavaScript code than needed
> Needs static dependency analysis during some build step
» Works with synchronous require calls

Dependency Management 15/48

What comes next?

Asynchronous Module
Definition API

eeeeeeeeeeeeeeeeeeee

Asynchronous Module Definition APl (AMD)

v

Extracted from CommonJS Transport/C

v

API specifying an asynchronous way of declaring modules

v

Aimed at systems like browsers, who can’t request modules
synchronously

v

Can be used as a transport for already available CommonJS
modules

» Needs some sort of preprocessing

Dependency Management 16/48

Asynchronous Module Definition APl (AMD)

» Extracted from CommondJS Transport/C
» API specifying an asynchronous way of declaring modules

» Aimed at systems like browsers, who can’t request modules
synchronously

» Can be used as a transport for already available CommondS
modules

» Needs some sort of preprocessing

» Only a specification not a real implementation

Dependency Management 16/48

AMD - define

» Global function define has to be made available by any
implementation

» define([id], [dependencies], factory)

define (
"hello”’,
["writer '],
function(writer) {
return {
"hello’: function() {
writer.writeln("Hello_World”);

}

)

Dependency Management 17/48

AMD in the wild

» Full specification available online
» https://github.com/amdjs/amdjs-api/wiki/AMD

> A lot of different libraries are starting to support AMD:
> jQuery
» MooTools
» Dojo

> an

» NodedS and Browser implementations exist

Dependency Management 18/48

https://github.com/amdjs/amdjs-api/wiki/AMD

AMD - other cool aspects

» Simple CommondJS Wrapper Syntax

» Support for special LoaderObjects

» Load in evaluate resources in a special way (templates, json,
coffee-script)

Dependency Management 19/48

AMD - other cool aspects

» Simple CommondJS Wrapper Syntax

» Support for special LoaderObjects

» Load in evaluate resources in a special way (templates, json,
coffee-script)

Dependency Management 19/48

CommondJS Wrapper Syntax

» CommondJS Modules are using special variables/functions to
handle requirements

> require
> exports
> module

» Possibility to use CommondJS Modules inside the browser
desirable

Dependency Management 20/48

CommondJS Wrapper Syntax

» Problem: Synchronous calling behaviour
» require immediately returns the requested module

» Solution: Asynchronous wrapper + a little bit of magic

» Async wrapper around require, exports, module
» Static code analysis of module to isolate needed dependencies

Dependency Management 21/48

CommondS Wrapper Syntax - Example

var otherModule = require('otherModule ") ;

function add(a, b) {
return a + b;

}
function inc(value) {
return value + 1;

}

exports.inc = inc;

Dependency Management

22/48

CommondS Wrapper Syntax - Example

define (function (require , exports, module){
var otherModule = require(otherModule ") ;

function add(a, b) {
return a + b;

}

function inc(value) {
return value + 1;

}
exports.inc = inc;
b)) ¢

Dependency Management

22/48

Using CommondJS Modules

» A great amount of CommonJS modules can be used
» Wrapping process can be automated

> A lot of people always use the wrapped syntax, as they find it
more readable

Dependency Management 23/48

Limitations of Wrapped Syntax

» The wrapped syntax has certain limitations

Dependency Management

24/48

Limitations of Wrapped Syntax

» The wrapped syntax has certain limitations

» Non static require dependencies can't be resolved
» var foo = require(["path", "file"].join("/");

Dependency Management 24/48

Limitations of Wrapped Syntax

» The wrapped syntax has certain limitations

» Non static require dependencies can't be resolved
» var foo = require(["path", "file"].join("/");

» Modules can’t be given an arbitrary name
» The name is given by their filepath

Dependency Management 24/48

AMD - other cool aspects

» Simple CommondJS Wrapper Syntax

» Support for special LoaderObjects

» Load in evaluate resources in a special way (templates, json,
coffee-script)

Dependency Management 25/48

AMD - other cool aspects

» Simple CommondJS Wrapper Syntax

» Support for special LoaderObjects

» Load in evaluate resources in a special way (templates, json,
coffee-script)

Dependency Management 25/48

Loader objects

» Other assets need async and dependency management as
well

» Coffee-Script
» JSON documents
» Text (templates, css, ...)

» AMD Loader objects are the solution to this requirement

Dependency Management 26/48

Loader objects

» Loader objects provide JavaScript unspecific loading code
» They can be used whenever a dependency name is required

» Syntax: loader-name!identifier

Dependency Management 27148

Loader objects

» Loader objects provide JavaScript unspecific loading code
» They can be used whenever a dependency name is required

» Syntax: loader-name!identifier

Dependency Management 27148

Loader objects

» Loader objects provide JavaScript unspecific loading code
» They can be used whenever a dependency name is required

» Syntax: loader-name!identifier

Dependency Management 27148

Loader objects

» Loader objects provide JavaScript unspecific loading code
» They can be used whenever a dependency name is required

» Syntax: loader-name!identifier

var data = require(’json!/some/json/data.json’);

var module = require(’'coffee !some/coffee/module’);

Dependency Management 27148

Creating your own Loader object

» Custom loader objects can easily be created and registered

Dependency Management

28/48

Creating your own Loader object

» Custom loader objects can easily be created and registered

1. Define a module as usual
» The module name will be the loader name

Dependency Management 28/48

Creating your own Loader object

» Custom loader objects can easily be created and registered

1. Define a module as usual
» The module name will be the loader name

2. Export a load function from the module
» load: function(name, req, load, config)

Dependency Management 28/48

Creating your own Loader object

» Custom loader objects can easily be created and registered

1. Define a module as usual
» The module name will be the loader name

2. Export a load function from the module
» load: function(name, req, load, config)

3. Optionally export: normalize or write

Dependency Management 28/48

Creating your own Loader object

» A string loader

Dependency Management

29/48

Creating your own Loader object

» A string loader (completely useless ;)

Dependency Management

29/48

Creating your own Loader object

» A string loader (completely useless ;)

define (
"string”,
{
load: function(name, req, load, config) {
// Simply return the given name/string
load (name) ;

Dependency Management 29/48

What comes next?

Dependency Management

Require.js

30/48

Require.js

\4

Implementation of the AMD specification

v

Small footprint (5,8kb)

v

Well documented

v

Quite feature complete optimizer (r.js)

Node.js AMD bridge

v

v

Vast amount of LoaderObjects

Dependency Management

30/48

Using requirejs

» Create an application conforming to the AMD spec

» Download the require. js loader from
http://requirejs.org
» Add require. js to your main application html

Dependency Management 31/48

http://requirejs.org

Using requirejs

v

Create an application conforming to the AMD spec
Download the require. js loader from
http://requirejs.org

Add require. js to your main application html

\4

v

v

Require.js will take it from here

Dependency Management 31/48

http://requirejs.org

File structure

For Require.js to work properly you need a certain file structure

application-directory
» index.html
> CSs
> ..
> scripts
> require.js
» main.js

modulel. js
subfolder

> module2.js

v

v

Dependency Management 32/48

File structure

For Require.js to work properly you need a certain file structure

application-directory
» index.html
> CSs
> ..
» scripts
» require.js
» main.js

» modulel. js
» subfolder

» module2.js

Dependency Management 32/48

Require.js - Loading the library

» Loading require. js into your application context

<htmli>
<head>
<script data—main="scripts/main”
src="scripts/require.js ">
</script>
</head>
<body> . ..</body>
</html>

Dependency Management 33/48

Require.js - Loading the library
» Loading require. js into your application context

<html>
<head>
<script data—main="scripts/main”
src="scripts/require.js”’>
</script>
</head>
<body> . .. </body>
</html>

> You should only provide one application entry point
» Specify the entry point using data-main
» This allows for easier usage of the optimizer later on

Dependency Management 33/48

Require.js - An example

» A project consisting of 4 files:

File: scripts/main.js

require (['a’, 'b’], function(a, b) {
1

File: scripts/a.js

require (['c’], function(c) {

1

File: scripts/b.js

require (['c’], function(c) {

1

File: scripts/c.js

require ([], function() {
1

Dependency Management

34/48

Require.js - An example

» Graphical representation of example dependencies

Dependency Management 35/48

Require.js - An example

Name Status size Time

Path Method |Text |Type |lnitiator y | Timeline g...s| sms tams| zims 26ms 3u-s| sams 35ms
indextmi 1ms

S e [GETsuccess cexgmm - otver Goma. 1™ @
requirejs index b7 1ms

& oot GET Successtextfav.. poes (from ca... e =

e . ot require.s 1888 o8 1ms
Jusers/iakot ccess @i oo az8 o
ajs require.s:1388 o 3ms

= Jusersjiakot | °ET Success - textlian g 348)
bis require5:1384 o 2ms

| Jusersyiakot | °FT Success - textlian g 348 o o
cis require.s:1388 o 2ms

Jusersjiakot | °ET Success - textlian g 308)

Dependency Management

36/48

What comes next?

r.js

Dependency Management

37/48

Disadvantages of AMD in production use

v

Dynamic loading of resources is nice during development

v

It's mostly catasthropic for production use

v

The application should be packaged into one or multiple
bigger modules

Packages should be properly minified and/or compressed

\4

Dependency Management

37/48

Disadvantages of AMD in production use

v

Dynamic loading of resources is nice during development

v

It's mostly catasthropic for production use

v

The application should be packaged into one or multiple
bigger modules

Packages should be properly minified and/or compressed

\4

r. js automatically does that for AMD
modules

Dependency Management

37/48

r.js - The optimizer

» r.jsis part of require. js

Compatible with all AMD conform implementations

Allows for automatic dependency tracing, combining and
minification

Extensibly configurable to include non AMD modules as well

Split your app into a defined set of packages and auto
generate them

v

v

\{

v

Dependency Management

38/48

Optimizing the a,b,c example

» Remember the example utilizing the a, b and c modules?

Dependency Management 39/48

Optimizing the a,b,c example

» Before optimization can be done a lean configuration for r. js
is needed

» The configuration can be placed anywhere inside or outside
the application tree

» Only the paths inside the configuration need match your
project

Dependency Management 40/ 48

Optimizing the a,b,c example

» Configuration for our a, b, c example project
» Named app.build.config and placed at the project root

(!
appDir: ./,
baseUrl: ’scripts’,
dir: ‘build’,
modules: [
{
name: 'main’,
1,
]
1)
Dependency Management 41/48

Optimizing the a,b,c example

» After creating a configuration simply run r. js with it

r.js —o app.build.config

Dependency Management 42 /48

Optimizing the a,b,c example

» After creating a configuration simply run r. js with it

r.js —o app.build.config

Tracing dependencies for: main

Uglifying file: /Users/jakob/playground/requirejs/build/app.build.js
Uglifying file: /Users/jakob/playground/requirejs/build/scripts/a.js
Uglifying file: /Users/jakob/playground/requirejs/build/scripts/b.js
Uglifying file: /Users/jakob/playground/requirejs/build/scripts/c.js
Uglifying file: /Users/jakob/playground/requirejs/build/scripts/main.js
Uglifying file: /Users/jakob/playground/requirejs/build/scripts/require.js

scripts/main. js
scripts/c.js
scripts/a.js
scripts/b.js
scripts/main.js

Dependency Management 42/ 48

Optimizing the a,b,c example

» r.js creates a copy of the whole project including any
resource

» Including the build main. js with resolved and embedded
dependencies

» Simply open the index.html from the build folder

Dependency Management 43/48

Optimizing the a,b,c example

» r.js creates a copy of the whole project including any
resource

» Including the build main. js with resolved and embedded
dependencies

» Simply open the index.html from the build folder

ame Meth... | Status Initiator Size Time imeline

Path Text | TYP® Conten | Latency T i . T
index html 1ms
<q . . GET Succ text/. Other (fro o
==] /Users/jakob/playgrou 1ms
requires e s texty, Indexchimi:7 08 lms
j JUsers/jakobyplaygrou uee... 1M rser 16.11KI 0
mainjs require.[s:7 08 lms
GET s text
j JUsers/jakob/playgrou uee 2 | 5o 2328 0

Dependency Management

43 /48

What comes next?

Alternatives

Dependency Management

44/48

Alternative Dependency Management tools

» Most sophisticated inner app dependency management:
require.js, r.js

Dependency Management 44/ 48

Alternative Dependency Management tools

» Most sophisticated inner app dependency management:
require.js, r.js
» Dependency management on different layers is required as
well
» External libraries
» Ressources

4 es

Dependency Management 44/ 48

Different Layer Alternatives

» npm (Node package manager)
> http://npmjs.org
» Package management utility for nodejs applications
» Installation of dependencies from package. json

» Does provide in-browser libraries like jQuery and underscore
as well

Dependency Management

45/ 48

http://npmjs.org
http://ender.no.de/

Different Layer Alternatives

» npm (Node package manager)
> http://npmjs.org
» Package management utility for nodejs applications
> Installation of dependencies from package. json
» Does provide in-browser libraries like jQuery and underscore
as well
> ender.js

> http://ender.no.de/

» npm based dependency management tool especially for
in-browser libraries

» Does include packaging and minification

» Hard to integrate with application-level dependency
management

Dependency Management 45/ 48

http://npmjs.org
http://ender.no.de/

Different Layer Alternatives

» Bower

> http://twitter.github.com/bower

» Newly created dependency management system especially for
the in-browser resources

Manages JavaScript, CSS, HTML, ...

Like npm, but for the browser libraries

Integrates nicely with require. js

v

v

v

Dependency Management 46/ 48

http://twitter.github.com/bower
http://jamjs.org

Different Layer Alternatives

» Bower

> http://twitter.github.com/bower

» Newly created dependency management system especially for
the in-browser resources

Manages JavaScript, CSS, HTML, ...

Like npm, but for the browser libraries

Integrates nicely with require. js

v

v

v

» Jam

> http://jamjs.org
» Package manager for in-browser packages
» Generates needed require. js configuration automatically

Dependency Management 46/ 48

http://twitter.github.com/bower
http://jamjs.org

What comes next?

Dependency Management

Conclusion

47 /48

Conclusion

» Complex JavaScript applications consist of a lot of different
parts

Dependency Management 47/ 48

Conclusion

» Complex JavaScript applications consist of a lot of different
parts

» CommondS Modules provide a clean way of defining them

Dependency Management 47/ 48

Conclusion

» Complex JavaScript applications consist of a lot of different
parts

» CommondS Modules provide a clean way of defining them

» Modules inside the browser have special requirements
(asynchronous loading)

Dependency Management 47/ 48

Conclusion

» Complex JavaScript applications consist of a lot of different
parts

» CommondS Modules provide a clean way of defining them

» Modules inside the browser have special requirements
(asynchronous loading)

» AMD is a solution to this problem

Dependency Management 47 /48

Conclusion

» Complex JavaScript applications consist of a lot of different
parts

» CommondS Modules provide a clean way of defining them

» Modules inside the browser have special requirements
(asynchronous loading)

» AMD is a solution to this problem

» require.js and r. js the most sophisticated solution using
AMD

Dependency Management 47 /48

Conclusion

» Complex JavaScript applications consist of a lot of different
parts

» CommondS Modules provide a clean way of defining them

» Modules inside the browser have special requirements
(asynchronous loading)

» AMD is a solution to this problem

» require.js and r. js the most sophisticated solution using
AMD

» Alternatives for other levels of dependency management exist
(Bower, Jam, ...)

Dependency Management 47/ 48

Thanks for listening

Questions, comments or annotations?

Rate this talk: https://joind.in/7361

Slides: http://talks.qafoo.com

Contact: Jakob Westhoff <jakob@gafoo.com>
Follow Me: @jakobwesthoff
Hire us: http://qafoo.com

Dependency Management 48/48

	Welcome
	Motivation
	CommonJS Modules
	Asynchronous Module Definition API
	Require.js
	r.js
	Alternatives
	Conclusion

