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Questions answered today

1. What is jQuery?
What is jQuery UI?
What features and widgets does jQuery Ul provide?

In which way can jQuery Ul be used to write own widgets?

o &> 0w b

How does the jQuery Ul Theme generation/usage work?

Piece by piece
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What comes next?

Piece by piece

jQuery
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jQuery about itself

v

Fast and concise JavaScript library

v

HTML document traversing

v

Event handling
Animation

AJAX

\{

v
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Working with jQuery

$(".tooltip”).addClass("highlight”).fadeln("slow”);
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Working with jQuery

$(”.tooltip”).addClass(”highlight”).fadeln("slow”);

» Document centric

» Operates on sets accessed using $ or jQuery

» $(css selector) . operation
» jQuery(css selector) . operation

» Fluent interface paradigm
» operation() .operation() .operation()
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What comes next?

jQuery-Ul




jQuery-Ul about itself

From the jQuery-Ul Website:

jQuery Ul provides abstractions for low-level interaction and
animation, advanced effects and high-level, themeable widgets,
built on top of the jQuery JavaScript Library, that you can use to
build highly interactive web applications.
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jQuery-Ul - A short overview

> A set of high level widgets

» Low level framework to create own Widgets, Behaviors and
Effects

» Compatible with all major Browsers (thanks to jQuery)
» Modular code base between 5-220kb

» Fully themeable using a graphical tool: ThemeRoller
» Highly extensible

» Download: http://jqueryui.com
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What comes next?
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Widgets
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Widgets included in jQuery Ul

» Accordion

v

Autocomplete

v

Button

v

Dialog
Slider
Tabs

v

v

v

Datepicker

v

Progressbar
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Live Demo

Live Demo - jQuery Ul Widgets

Live Demo
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Accordion

Section 1

Mauris mauris ante, blandit et, ultrices a, suscipit eget, quam. Integer ut neque.
Vivamus nisi metus, molestie vel, gravida in, condimentum sit amet, nunc. Nam a
nibh. Donec suscipit eros. Nam mi. Proin viverra leo ut odio. Curabitur malesuada.
Vestibulum a velit eu ante scelerisque vulputate.

Section 2
Section 3

Section 4

Piece by piece




Accordion

Section 1

Section 2

Sed non urna. Donec et ante. Phasellus eu ligula. Vestibulum sit amet purus. Vivamus
hendrerit, dolor at aliquet laoreet, mauris turpis porttitor velit, faucibus interdum
tellus libero ac justo. Vivamus non quam. In suscipit faucibus urna.
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Accordion

Section 1

Section 2

Section 3

Nam enim risus, molestie et, porta ac, aliquam ac, risus. Quisque lobortis. Phasellus
pellentesque purus in massa. Aenean in pede. Phasellus ac libero ac tellus
pellentesque semper. Sed ac felis. Sed commodo, magna quis lacinia ornare, quam
ante aliquam nisi, eu iaculis leo purus venenatis dui.

* List item one
e List item two
* List item three
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Autocomplete

Tags: |Script
ActionScript

AppleScript

JavaScript

Piece by piece
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Buttons

Piece by piece

A button element ][ A submit button ][ An anchor ]
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Dialog

Basic modal dialog x

Adding the modal overlay screen makes the dialog
look more prominent because it dims out the page

content.
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Slider
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Tabs

_ Proin dolor Aenean lacinia

Proin elit arcu, rutrum commodo, vehicula tempus, commodo a, risus. Curabitur nec arcu. Donec

sollicitudin mi sit amet mauris. Nam elementum quam ullamcorper ante. Etiam aliquet massa et
lorem. Mauris dapibus lacus auctor risus. Aenean tempor ullamcorper leo. VVivamus sed magna
quis ligula eleifend adipiscing. Duis orci. Aliquam sodales tortor vitae ipsum. Aliqguam nulla. Duis
aliquam molestie erat. Ut et mauris vel pede varius sollicitudin. Sed ut dolor nec orci tincidunt
interdum. Phasellus ipsum. Nunc tristique tempus lectus.
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Datepicker

Date: [10/14/2010 \
[4] October 2010
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Progressbar

Piece by piece 19/55




What comes next?

Behaviors
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Behaviors included in jQuery Ul

v

Draggable

v

Droppable

Resizable

v

Selectable

\{

Sortable

v
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What comes next?

Piece by piece

Effects
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Effects included in jQuery Ul

» Blind
» Bounce
» Clip
» Drop

v

Explode
Fold
Highlight

v

v

v

Pulsate
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What comes next?

Animation
Enhancements
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Animation Enhancements over default jQuery

» Color animations

» New easing functions
» easelInBounce
> easeInQuad

> ee

» CSS class based animation

Piece by piece
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What comes next?

Calling conventions
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Calling conventions

» For each widget (behavior) one function is registered

» The function can be called on any created jQuery set
(jQuery. fn)

» The widgets name is used as function name

» All interaction with the Widget is accomplished through this
function
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Calling conventions

» Widget creation

$("#id ") .autocomplete () ;
$(’#id ") .autocomplete ({...

Piece by piece
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Calling conventions

» Widget creation

("#id ") .autocomplete (

$ )
$("#id”).autocomplete ({...});

> Invoking a method without arguments

$("#id ") .autocomplete ("method”) ;
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Calling conventions

» Widget creation

("#id ") .autocomplete (

$ )
$("#id”).autocomplete ({...});

> Invoking a method without arguments

$("#id”).autocomplete ("method”) ;

» Invoking a method with arguments

$("#id”).autocomplete ("method”, argi,

Piece by piece
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What comes next?

Creating your own
Widget
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Creating a Widget without jQuery-UI

v

Widgets usually have a state

» Excessive use of .data method
» Nested closures and custom objects

\{

Different initialization phases

v

Handling of default and user options

v

Multiple public methods

\{

Destruct and remove Widget on request

Piece by piece
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What comes next?

Widget Factory




The Widget factory of jQuery-Ul

v

DOM-Instance based persistent states

v

"Magic” methods for different initialization phases

v

Automatic merging of default and user supplied options

v

Custom methods without namespace pollution

v

Distinguish between public and private methods
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What comes next?

Example Widget
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The SparkleBar Widget

» A custom made progressbar
> Less flexible due to heavy usage of images

» More sophisticated graphical design possible

(lss444400 )
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Live Demo

Live Demo - SparkleBar

Piece by piece

Live Demo
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Filename conventions

» Name of this widget: sparklebar

» Namespace of this widget: ui

» All widgets should follow a certain filename convention:

> jquery.ui.sparklebar.js
> jquery.ui.sparklebar.css
> jquery.ui.sparklebar/image.png

> e

Piece by piece
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The widget factory in action

v

Call $.widget to create a new Widget

v

First argument: namespace and identifier

v

Namespaces do not protect against naming conflicts

v

All default widgets use the ui namespace

v

Using the ui namespace for your own widgets is just fine
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The widget factory in action

$.widget (
‘ui.sparklebar’,

{

/+ Widget implementation =/

}
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What comes next?

Initialization

Piece by piece
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"Magic” _create method

» create function is automatically invoked on widget creation

» Only called once for each widget
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Access to the targeted element

» Targeted element stored in element property
» Saved as jQuery set

» Other magic properties exist: options, widgetName,
widgetEventPrefix
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"Magic” _create method

$.widget( "ui.sparklebar”, {
_create: function() {

this.element.empty () ;
$( '<img./>" ).appendTo(
this.element

)

// ... Set needed properties of img

Piece by piece
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"Magic” _create method

$.widget( "ui.sparklebar”, {
_create: function() {

this.element.empty () ;
$( '<img./>" ).appendTo(

this.element

IE

/l ... Set needed properties of img ...
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"Magic” _init method

» _init is invoked every time the widget function is called
without a method name
» $("#id") .sparklebar()

» $("#id") .sparklebar({...})
» Little brother of the _create function

» Called after _create has been called

Piece by piece B5YI55)




"Magic” _init method

$.widget( "ui.sparklebar”, {
_init: function () {

// Set DOM properties based on provided options
// Initialize state of the widget

Piece by piece
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"Magic” _init method

$.widget( "ui.sparklebar”, {
_init: function() {

// Set DOM properties based on provided options
// Initialize state of the widget
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"Magic” _init method

$.widget( "ui.sparklebar”, {
_init: function () {

// Set DOM properties based on provided options
// Initialize state of the widget
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_init and create

» Use _create to prepare the DOM for the widget

» Use _init to initialize widget based on options
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What comes next?

Methods / Properties
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Widget methods and properties

» Use custom properties and methods to structure your code

» Both are defined in the Widget object
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Widget methods and properties

» Use custom properties and methods to structure your code

» Both are defined in the Widget object

$.widget(
‘ui.sparklebar’,
{
‘currentValue ': 42
‘value ": function() {...}
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One instance per Widget

> A new instance is created for each Widget invocation

» Properties are persistent
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One instance per Widget

> A new instance is created for each Widget invocation

» Properties are persistent
$.widget( "ui.sparklebar”, {

"value”: function(val) {
this.currentValue = val;

// Display progressbar change

Piece by piece
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Fluent interface and returned values

» Widget factory takes care of fluent interface handling

» Returning a value from a method circumvents this behavior
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Fluent interface and returned values

» Widget factory takes care of fluent interface handling
» Returning a value from a method circumvents this behavior

$.widget( "ui.sparklebar”, {
getValue: function(val) {
return this.currentValue;

}
1)

Piece by piece

40/55
2 Qoafoo




Private methods

» Methods prefixed with underscore (_) are private

» Properties are always private
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Private methods

» Methods prefixed with underscore (_) are private
» Properties are always private
$.widget( "ui.sparklebar”, {

_updateVisualRepresentation: function () {

}
1)

Piece by piece
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What comes next?

Piece by piece

Options
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Configuration options for your widget

» Most widgets need configuration in order to be reusable
» Named options can be provided during widget creation

» Remember: §("#id") .sparklebar({...})
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Handling of Options

» Options are stored in the magic options property
» Options are always optional

» Default values need to be provided for each option
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Handling of Options - options property

$.widget( "ui.sparklebar”, {
options: {
color: ’orange’,
initialValue: 0,
animate: true
I
1
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Handling of Options - Access merged options

» Default options are automatically merged with user options

» Result is written back to the options property
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Handling of Options - Access merged options

$("#id”).sparklebar ({initialValue: 40});

$.widget( ’'ui.sparklebar’, {
_init: function () {
this.currentValue = this.options.initialValue;
},
1
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What comes next?

Excursion: Event
namespaces
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Event namespaces - a mostly unknown feature

v

Group registered events by a certain identifier

v

As usual use bind in order to listen for events

v

Namespaces and event types separated using a dot (.)
> eg. click.namespace

v

Namespaces allow easy de-registration/management

> .unbind("click.namespace")
> .unbind(".namespace™)
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Event namespaces in widget development

v

Always use event namespaces inside your widgets

v

Use the widget identifier as namespace

v

No conflict between your event handlers and others

v

Easy de-registration possible without remembering the
callback
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What comes next?

Visual Appearance
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CSS formatting in widgets

v

Use CSS rules for visual formatting if possible

v

Decoupling of functionality and representation

v

Store CSS in appropriate position
> jquery.ui.sparklebar.css

v

Always use classes not ids (multiple invocation)

v

Use widget name and namespace as prefix
» ui-sparklebar-container

v

Follow the hierarchy of your elements
» ui-sparklebar-container-bar
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ThemeRoller - An online theme creator

v

ThemeRoller is a WYSIWYG application to design themes

v

Specifically written for jQuery Ul

v

Realized as a web application

v

Creates needed CSS themes & images on the fly

Piece by piece 50/55




ThemeRoller

» Custom Widgets can profit from ThemeRoller as well
» Use jQuery-Ul CSS framework for your elements

» Just a set of predefined CSS classes
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ThemeRoller

» Structural helper
> ui-helper-hidden, ui-helper-clearfix, ...

v

Widget look and feel

> ui-widget-header, ui-widget-content, ...

v

Button and input element marker
» ui-priority-primary, ui-state-default, ...

v

Visual states
» ui-state-highlight, ui-state-error, ...

v

Icons
» ui-icon, ui-icon-folder-collapsed, ...
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What comes next?

Conclusion
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What you have learned today - In general

1. Obey the filename rules: jquery.namespace.widget.js
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What you have learned today - In general

1. Obey the filename rules: jquery.namespace.widget.js
Use the Widget factory ($.widget)
Don’t be afraid of using many options

Always use Event namespaces to register events

o &~ oD

Prefix your CSS classes with the widget name, follow the
hierarchy
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What you have learned today - About the factory

1. State of your Widget is preserved

Piece by piece
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What you have learned today - About the factory

1. State of your Widget is preserved
Properties are always private, methods can be (underscore)
The fluent interface is taken care of if no value is returned

User options and defaults are automatically merged

o M b

_create is the right place to manifest your widget in the DOM
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What you have learned today - About the factory

1. State of your Widget is preserved

Properties are always private, methods can be (underscore)
The fluent interface is taken care of if no value is returned
User options and defaults are automatically merged

_create is the right place to manifest your widget in the DOM

I

_init is the right place to initialize the widgets state
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Thanks for Listening

Questions? Comments? Critics? Ideas?

Please rate this talk at

https://joind.in/6103
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