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Questions answered today

1. What is jQuery?

2. What is jQuery UI?

3. What features and widgets does jQuery UI provide?

4. In which way can jQuery UI be used to write own widgets?

5. How does the jQuery UI Theme generation/usage work?
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What comes next?

jQuery
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jQuery about itself

I Fast and concise JavaScript library

I HTML document traversing

I Event handling

I Animation

I AJAX

Piece by piece 6 / 55



Working with jQuery

$ ( ” . t o o l t i p ” ) . addClass ( ” h i g h l i g h t ” ) . fadeIn ( ” slow ” ) ;

I Document centric

I Operates on sets accessed using $ or jQuery
I $(css selector).operation
I jQuery(css selector).operation

I Fluent interface paradigm
I operation().operation().operation()
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What comes next?

jQuery-UI
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jQuery-UI about itself

From the jQuery-UI Website:

jQuery UI provides abstractions for low-level interaction and
animation, advanced effects and high-level, themeable widgets,
built on top of the jQuery JavaScript Library, that you can use to
build highly interactive web applications.
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jQuery-UI - A short overview

I A set of high level widgets

I Low level framework to create own Widgets, Behaviors and
Effects

I Compatible with all major Browsers (thanks to jQuery)

I Modular code base between 5-220kb

I Fully themeable using a graphical tool: ThemeRoller

I Highly extensible

I Download: http://jqueryui.com
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What comes next?

Widgets
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Widgets included in jQuery UI

I Accordion

I Autocomplete

I Button

I Dialog

I Slider

I Tabs

I Datepicker

I Progressbar
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Live Demo

Live Demo - jQuery UI Widgets

Live Demo
Next section
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Accordion
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Autocomplete
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Buttons
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Dialog

Piece by piece 15 / 55



Slider
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Tabs

Piece by piece 17 / 55



Datepicker
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Progressbar
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What comes next?

Behaviors
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Behaviors included in jQuery UI

I Draggable

I Droppable

I Resizable

I Selectable

I Sortable
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What comes next?

Effects
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Effects included in jQuery UI

I Blind

I Bounce

I Clip

I Drop

I Explode

I Fold

I Highlight

I Pulsate

I ...
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What comes next?

Animation
Enhancements
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Animation Enhancements over default jQuery

I Color animations

I New easing functions
I easeInBounce
I easeInQuad
I ...

I CSS class based animation
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What comes next?

Calling conventions
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Calling conventions

I For each widget (behavior) one function is registered

I The function can be called on any created jQuery set
(jQuery.fn)

I The widgets name is used as function name

I All interaction with the Widget is accomplished through this
function
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Calling conventions

I Widget creation

$ ( ” # i d ” ) . autocomplete ( ) ;
$ ( ” # i d ” ) . autocomplete ( { . . . } ) ;

I Invoking a method without arguments

$ ( ” # i d ” ) . autocomplete ( ” method ” ) ;

I Invoking a method with arguments

$ ( ” # i d ” ) . autocomplete ( ” method ” , arg1 , arg2 , . . . ) ;
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What comes next?

Creating your own
Widget
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Creating a Widget without jQuery-UI

I Widgets usually have a state
I Excessive use of .data method
I Nested closures and custom objects

I Different initialization phases

I Handling of default and user options

I Multiple public methods

I Destruct and remove Widget on request
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What comes next?

Widget Factory
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The Widget factory of jQuery-UI

I DOM-Instance based persistent states

I ”Magic” methods for different initialization phases

I Automatic merging of default and user supplied options

I Custom methods without namespace pollution

I Distinguish between public and private methods

Piece by piece 26 / 55



What comes next?

Example Widget
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The SparkleBar Widget

I A custom made progressbar

I Less flexible due to heavy usage of images

I More sophisticated graphical design possible
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Live Demo

Live Demo - SparkleBar

Live Demo

Piece by piece 28 / 55



Filename conventions

I Name of this widget: sparklebar

I Namespace of this widget: ui

I All widgets should follow a certain filename convention:
I jquery.ui.sparklebar.js
I jquery.ui.sparklebar.css
I jquery.ui.sparklebar/image.png
I ...
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The widget factory in action

I Call $.widget to create a new Widget

I First argument: namespace and identifier

I Namespaces do not protect against naming conflicts

I All default widgets use the ui namespace

I Using the ui namespace for your own widgets is just fine
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The widget factory in action

1 $ . widget (
2 ’ u i . spark lebar ’ ,
3 {

4 /∗ Widget implementat ion ∗ /
5 }

6 ) ;
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What comes next?

Initialization
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”Magic” create method

I create function is automatically invoked on widget creation

I Only called once for each widget
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Access to the targeted element

I Targeted element stored in element property

I Saved as jQuery set

I Other magic properties exist: options, widgetName,
widgetEventPrefix
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”Magic” create method

1 $ . widget ( ” u i . spark lebar ” , {
2 c rea te : function ( ) {
3

4 th is . element . empty ( ) ;
5

6 $ ( ’<img /> ’ ) . appendTo (
7 th is . element
8 ) ;
9

10 / / . . . Set needed p r o p e r t i e s o f img . . .
11

12 }

13 } ) ;
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”Magic” init method

I init is invoked every time the widget function is called
without a method name

I $("#id").sparklebar()

I $("#id").sparklebar({...})

I Little brother of the create function

I Called after create has been called
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”Magic” init method

1 $ . widget ( ” u i . spark lebar ” , {
2 i n i t : function ( ) {
3

4 / / Set DOM p r o p e r t i e s based on provided opt ions
5 / / I n i t i a l i z e s ta te o f the widget
6

7 }

8 } ) ;
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init and create

I Use create to prepare the DOM for the widget

I Use init to initialize widget based on options
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What comes next?

Methods / Properties
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Widget methods and properties

I Use custom properties and methods to structure your code

I Both are defined in the Widget object

1 $ . widget (
2 ’ u i . spark lebar ’ ,
3 {

4 ’ cur rentVa lue ’ : 42
5 ’ value ’ : function ( ) { . . . }
6 }

7 ) ;
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One instance per Widget

I A new instance is created for each Widget invocation

I Properties are persistent

1 $ . widget ( ” u i . spark lebar ” , {
2

3 ” value ” : function ( va l ) {
4 th is . cur rentVa lue = va l ;
5

6 / / D isp lay progressbar change
7 }

8

9 } ) ;
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Fluent interface and returned values

I Widget factory takes care of fluent interface handling

I Returning a value from a method circumvents this behavior

1 $ . widget ( ” u i . spark lebar ” , {
2 getValue : function ( va l ) {
3 return th is . cur rentVa lue ;
4 }

5 } ) ;
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Private methods

I Methods prefixed with underscore ( ) are private

I Properties are always private

1 $ . widget ( ” u i . spark lebar ” , {
2 updateVisua lRepresenta t ion : function ( ) {
3 . . .
4 }

5 } ) ;
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What comes next?

Options
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Configuration options for your widget

I Most widgets need configuration in order to be reusable

I Named options can be provided during widget creation

I Remember: $("#id").sparklebar({...})
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Handling of Options

I Options are stored in the magic options property

I Options are always optional

I Default values need to be provided for each option
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Handling of Options - options property

1 $ . widget ( ” u i . spark lebar ” , {
2 opt ions : {
3 co lo r : ’ orange ’ ,
4 i n i t i a l V a l u e : 0 ,
5 animate : true
6 } ,
7 } ) ;
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Handling of Options - Access merged options

I Default options are automatically merged with user options

I Result is written back to the options property
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Handling of Options - Access merged options

1 $ ( ” # i d ” ) . spark lebar ( { i n i t i a l V a l u e : 40 } ) ;
2

3 $ . widget ( ’ u i . spark lebar ’ , {
4 i n i t : function ( ) {
5 th is . cur rentVa lue = th is . op t ions . i n i t i a l V a l u e ;
6 } ,
7 } ) ;
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What comes next?

Excursion: Event
namespaces
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Event namespaces - a mostly unknown feature

I Group registered events by a certain identifier

I As usual use bind in order to listen for events

I Namespaces and event types separated using a dot (.)
I eg. click.namespace

I Namespaces allow easy de-registration/management
I .unbind("click.namespace")
I .unbind(".namespace")
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Event namespaces in widget development

I Always use event namespaces inside your widgets

I Use the widget identifier as namespace

I No conflict between your event handlers and others

I Easy de-registration possible without remembering the
callback
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What comes next?

Visual Appearance
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CSS formatting in widgets

I Use CSS rules for visual formatting if possible

I Decoupling of functionality and representation

I Store CSS in appropriate position
I jquery.ui.sparklebar.css

I Always use classes not ids (multiple invocation)

I Use widget name and namespace as prefix
I ui-sparklebar-container

I Follow the hierarchy of your elements
I ui-sparklebar-container-bar
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ThemeRoller - An online theme creator

I ThemeRoller is a WYSIWYG application to design themes

I Specifically written for jQuery UI

I Realized as a web application

I Creates needed CSS themes & images on the fly
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ThemeRoller

I Custom Widgets can profit from ThemeRoller as well

I Use jQuery-UI CSS framework for your elements

I Just a set of predefined CSS classes
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ThemeRoller

I Structural helper
I ui-helper-hidden, ui-helper-clearfix, ...

I Widget look and feel
I ui-widget-header, ui-widget-content, ...

I Button and input element marker
I ui-priority-primary, ui-state-default, ...

I Visual states
I ui-state-highlight, ui-state-error, ...

I Icons
I ui-icon, ui-icon-folder-collapsed, ...
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What comes next?

Conclusion
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What you have learned today - In general

1. Obey the filename rules: jquery.namespace.widget.js

2. Use the Widget factory ($.widget)

3. Don’t be afraid of using many options

4. Always use Event namespaces to register events

5. Prefix your CSS classes with the widget name, follow the
hierarchy
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What you have learned today - About the factory

1. State of your Widget is preserved

2. Properties are always private, methods can be (underscore)

3. The fluent interface is taken care of if no value is returned

4. User options and defaults are automatically merged

5. create is the right place to manifest your widget in the DOM

6. init is the right place to initialize the widgets state
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Thanks for Listening

Questions? Comments? Critics? Ideas?
Please rate this talk at

https://joind.in/6103
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