
Piece by piece
An introduction to jQuery-UI widget development

Jakob Westhoff <jakob@qafoo.com>

Confoo.ca
March 2, 2012

Piece by piece 1 / 55

About Me

I More than 10 years of
professional PHP
experience

I More than 7 years of
professional JavaScript
experience

I Open source enthusiast
I Regular speaker at

(inter)national conferences
I Consultant, Trainer and

Author

Working with

Qafoo
passion for software quality

Piece by piece 2 / 55

About Me

I More than 10 years of
professional PHP
experience

I More than 7 years of
professional JavaScript
experience

I Open source enthusiast
I Regular speaker at

(inter)national conferences
I Consultant, Trainer and

Author

Working with

Qafoo
passion for software quality

We help people to create
high quality web

applications.

Piece by piece 2 / 55

About Me

I More than 10 years of
professional PHP
experience

I More than 7 years of
professional JavaScript
experience

I Open source enthusiast
I Regular speaker at

(inter)national conferences
I Consultant, Trainer and

Author

Working with

Qafoo
passion for software quality

We help people to create
high quality web

applications.

http://qafoo.com

Piece by piece 2 / 55

http://qafoo.com

Questions answered today

1. What is jQuery?

2. What is jQuery UI?

3. What features and widgets does jQuery UI provide?

4. In which way can jQuery UI be used to write own widgets?

5. How does the jQuery UI Theme generation/usage work?

Piece by piece 5 / 55

What comes next?

jQuery

Piece by piece 6 / 55

jQuery about itself

I Fast and concise JavaScript library

I HTML document traversing

I Event handling

I Animation

I AJAX

Piece by piece 6 / 55

Working with jQuery

$ (” . t o o l t i p ”) . addClass (” h i g h l i g h t ”) . fadeIn (” slow ”) ;

I Document centric

I Operates on sets accessed using $ or jQuery
I $(css selector).operation
I jQuery(css selector).operation

I Fluent interface paradigm
I operation().operation().operation()

Piece by piece 7 / 55

Working with jQuery

$ (” . t o o l t i p ”) . addClass (” h i g h l i g h t ”) . fadeIn (” slow ”) ;

I Document centric

I Operates on sets accessed using $ or jQuery
I $(css selector).operation
I jQuery(css selector).operation

I Fluent interface paradigm
I operation().operation().operation()

Piece by piece 7 / 55

What comes next?

jQuery-UI

Piece by piece 8 / 55

jQuery-UI about itself

From the jQuery-UI Website:

jQuery UI provides abstractions for low-level interaction and
animation, advanced effects and high-level, themeable widgets,
built on top of the jQuery JavaScript Library, that you can use to
build highly interactive web applications.

Piece by piece 8 / 55

jQuery-UI - A short overview

I A set of high level widgets

I Low level framework to create own Widgets, Behaviors and
Effects

I Compatible with all major Browsers (thanks to jQuery)

I Modular code base between 5-220kb

I Fully themeable using a graphical tool: ThemeRoller

I Highly extensible

I Download: http://jqueryui.com

Piece by piece 9 / 55

What comes next?

Widgets

Piece by piece 10 / 55

Widgets included in jQuery UI

I Accordion

I Autocomplete

I Button

I Dialog

I Slider

I Tabs

I Datepicker

I Progressbar

Piece by piece 10 / 55

Live Demo

Live Demo - jQuery UI Widgets

Live Demo
Next section

Piece by piece 11 / 55

Accordion

Piece by piece 12 / 55

Accordion

Piece by piece 12 / 55

Accordion

Piece by piece 12 / 55

Autocomplete

Piece by piece 13 / 55

Buttons

Piece by piece 14 / 55

Dialog

Piece by piece 15 / 55

Slider

Piece by piece 16 / 55

Tabs

Piece by piece 17 / 55

Datepicker

Piece by piece 18 / 55

Progressbar

Piece by piece 19 / 55

What comes next?

Behaviors

Piece by piece 20 / 55

Behaviors included in jQuery UI

I Draggable

I Droppable

I Resizable

I Selectable

I Sortable

Piece by piece 20 / 55

What comes next?

Effects

Piece by piece 21 / 55

Effects included in jQuery UI

I Blind

I Bounce

I Clip

I Drop

I Explode

I Fold

I Highlight

I Pulsate

I ...

Piece by piece 21 / 55

What comes next?

Animation
Enhancements

Piece by piece 22 / 55

Animation Enhancements over default jQuery

I Color animations

I New easing functions
I easeInBounce
I easeInQuad
I ...

I CSS class based animation

Piece by piece 22 / 55

What comes next?

Calling conventions

Piece by piece 23 / 55

Calling conventions

I For each widget (behavior) one function is registered

I The function can be called on any created jQuery set
(jQuery.fn)

I The widgets name is used as function name

I All interaction with the Widget is accomplished through this
function

Piece by piece 23 / 55

Calling conventions

I Widget creation

$ (” # i d ”) . autocomplete () ;
$ (” # i d ”) . autocomplete ({ . . . }) ;

I Invoking a method without arguments

$ (” # i d ”) . autocomplete (” method ”) ;

I Invoking a method with arguments

$ (” # i d ”) . autocomplete (” method ” , arg1 , arg2 , . . .) ;

Piece by piece 24 / 55

Calling conventions

I Widget creation

$ (” # i d ”) . autocomplete () ;
$ (” # i d ”) . autocomplete ({ . . . }) ;

I Invoking a method without arguments

$ (” # i d ”) . autocomplete (” method ”) ;

I Invoking a method with arguments

$ (” # i d ”) . autocomplete (” method ” , arg1 , arg2 , . . .) ;

Piece by piece 24 / 55

Calling conventions

I Widget creation

$ (” # i d ”) . autocomplete () ;
$ (” # i d ”) . autocomplete ({ . . . }) ;

I Invoking a method without arguments

$ (” # i d ”) . autocomplete (” method ”) ;

I Invoking a method with arguments

$ (” # i d ”) . autocomplete (” method ” , arg1 , arg2 , . . .) ;

Piece by piece 24 / 55

What comes next?

Creating your own
Widget

Piece by piece 25 / 55

Creating a Widget without jQuery-UI

I Widgets usually have a state
I Excessive use of .data method
I Nested closures and custom objects

I Different initialization phases

I Handling of default and user options

I Multiple public methods

I Destruct and remove Widget on request

Piece by piece 25 / 55

What comes next?

Widget Factory

Piece by piece 26 / 55

The Widget factory of jQuery-UI

I DOM-Instance based persistent states

I ”Magic” methods for different initialization phases

I Automatic merging of default and user supplied options

I Custom methods without namespace pollution

I Distinguish between public and private methods

Piece by piece 26 / 55

What comes next?

Example Widget

Piece by piece 27 / 55

The SparkleBar Widget

I A custom made progressbar

I Less flexible due to heavy usage of images

I More sophisticated graphical design possible

Piece by piece 27 / 55

Live Demo

Live Demo - SparkleBar

Live Demo

Piece by piece 28 / 55

Filename conventions

I Name of this widget: sparklebar

I Namespace of this widget: ui

I All widgets should follow a certain filename convention:
I jquery.ui.sparklebar.js
I jquery.ui.sparklebar.css
I jquery.ui.sparklebar/image.png
I ...

Piece by piece 29 / 55

The widget factory in action

I Call $.widget to create a new Widget

I First argument: namespace and identifier

I Namespaces do not protect against naming conflicts

I All default widgets use the ui namespace

I Using the ui namespace for your own widgets is just fine

Piece by piece 30 / 55

The widget factory in action

1 $. widget (
2 ’ u i . spark lebar ’ ,
3 {

4 /∗ Widget implementat ion ∗ /
5 }

6) ;

Piece by piece 31 / 55

What comes next?

Initialization

Piece by piece 32 / 55

”Magic” create method

I create function is automatically invoked on widget creation

I Only called once for each widget

Piece by piece 32 / 55

Access to the targeted element

I Targeted element stored in element property

I Saved as jQuery set

I Other magic properties exist: options, widgetName,
widgetEventPrefix

Piece by piece 33 / 55

”Magic” create method

1 $. widget (” u i . spark lebar ” , {
2 c rea te : function () {
3

4 th is . element . empty () ;
5

6 $ (’ ’) . appendTo (
7 th is . element
8) ;
9

10 / / . . . Set needed p r o p e r t i e s o f img . . .
11

12 }

13 }) ;

Piece by piece 34 / 55

”Magic” create method

1 $. widget (” u i . spark lebar ” , {
2 c rea te : function () {
3

4 th is . element . empty () ;
5

6 $ (’ ’) . appendTo (
7 th is . element
8) ;
9

10 / / . . . Set needed p r o p e r t i e s o f img . . .
11

12 }

13 }) ;

Piece by piece 34 / 55

”Magic” create method

1 $. widget (” u i . spark lebar ” , {
2 c rea te : function () {
3

4 th is . element . empty () ;
5

6 $ (’ ’) . appendTo (
7 th is . element
8) ;
9

10 / / . . . Set needed p r o p e r t i e s o f img . . .
11

12 }

13 }) ;

Piece by piece 34 / 55

”Magic” create method

1 $. widget (” u i . spark lebar ” , {
2 c rea te : function () {
3

4 th is . element . empty () ;
5

6 $ (’ ’) . appendTo (
7 th is . element
8) ;
9

10 / / . . . Set needed p r o p e r t i e s o f img . . .
11

12 }

13 }) ;

Piece by piece 34 / 55

”Magic” init method

I init is invoked every time the widget function is called
without a method name

I $("#id").sparklebar()

I $("#id").sparklebar({...})

I Little brother of the create function

I Called after create has been called

Piece by piece 35 / 55

”Magic” init method

1 $. widget (” u i . spark lebar ” , {
2 i n i t : function () {
3

4 / / Set DOM p r o p e r t i e s based on provided opt ions
5 / / I n i t i a l i z e s ta te o f the widget
6

7 }

8 }) ;

Piece by piece 36 / 55

”Magic” init method

1 $. widget (” u i . spark lebar ” , {
2 i n i t : function () {
3

4 / / Set DOM p r o p e r t i e s based on provided opt ions
5 / / I n i t i a l i z e s ta te o f the widget
6

7 }

8 }) ;

Piece by piece 36 / 55

”Magic” init method

1 $. widget (” u i . spark lebar ” , {
2 i n i t : function () {
3

4 / / Set DOM p r o p e r t i e s based on provided opt ions
5 / / I n i t i a l i z e s ta te o f the widget
6

7 }

8 }) ;

Piece by piece 36 / 55

init and create

I Use create to prepare the DOM for the widget

I Use init to initialize widget based on options

Piece by piece 37 / 55

What comes next?

Methods / Properties

Piece by piece 38 / 55

Widget methods and properties

I Use custom properties and methods to structure your code

I Both are defined in the Widget object

1 $. widget (
2 ’ u i . spark lebar ’ ,
3 {

4 ’ cur rentVa lue ’ : 42
5 ’ value ’ : function () { . . . }
6 }

7) ;

Piece by piece 38 / 55

Widget methods and properties

I Use custom properties and methods to structure your code

I Both are defined in the Widget object

1 $. widget (
2 ’ u i . spark lebar ’ ,
3 {

4 ’ cur rentVa lue ’ : 42
5 ’ value ’ : function () { . . . }
6 }

7) ;

Piece by piece 38 / 55

One instance per Widget

I A new instance is created for each Widget invocation

I Properties are persistent

1 $. widget (” u i . spark lebar ” , {
2

3 ” value ” : function (va l) {
4 th is . cur rentVa lue = va l ;
5

6 / / D isp lay progressbar change
7 }

8

9 }) ;

Piece by piece 39 / 55

One instance per Widget

I A new instance is created for each Widget invocation

I Properties are persistent

1 $. widget (” u i . spark lebar ” , {
2

3 ” value ” : function (va l) {
4 th is . cur rentVa lue = va l ;
5

6 / / D isp lay progressbar change
7 }

8

9 }) ;

Piece by piece 39 / 55

Fluent interface and returned values

I Widget factory takes care of fluent interface handling

I Returning a value from a method circumvents this behavior

1 $. widget (” u i . spark lebar ” , {
2 getValue : function (va l) {
3 return th is . cur rentVa lue ;
4 }

5 }) ;

Piece by piece 40 / 55

Fluent interface and returned values

I Widget factory takes care of fluent interface handling

I Returning a value from a method circumvents this behavior

1 $. widget (” u i . spark lebar ” , {
2 getValue : function (va l) {
3 return th is . cur rentVa lue ;
4 }

5 }) ;

Piece by piece 40 / 55

Private methods

I Methods prefixed with underscore () are private

I Properties are always private

1 $. widget (” u i . spark lebar ” , {
2 updateVisua lRepresenta t ion : function () {
3 . . .
4 }

5 }) ;

Piece by piece 41 / 55

Private methods

I Methods prefixed with underscore () are private

I Properties are always private

1 $. widget (” u i . spark lebar ” , {
2 updateVisua lRepresenta t ion : function () {
3 . . .
4 }

5 }) ;

Piece by piece 41 / 55

What comes next?

Options

Piece by piece 42 / 55

Configuration options for your widget

I Most widgets need configuration in order to be reusable

I Named options can be provided during widget creation

I Remember: $("#id").sparklebar({...})

Piece by piece 42 / 55

Handling of Options

I Options are stored in the magic options property

I Options are always optional

I Default values need to be provided for each option

Piece by piece 43 / 55

Handling of Options - options property

1 $. widget (” u i . spark lebar ” , {
2 opt ions : {
3 co lo r : ’ orange ’ ,
4 i n i t i a l V a l u e : 0 ,
5 animate : true
6 } ,
7 }) ;

Piece by piece 44 / 55

Handling of Options - Access merged options

I Default options are automatically merged with user options

I Result is written back to the options property

Piece by piece 45 / 55

Handling of Options - Access merged options

1 $ (” # i d ”) . spark lebar ({ i n i t i a l V a l u e : 40 }) ;
2

3 $. widget (’ u i . spark lebar ’ , {
4 i n i t : function () {
5 th is . cur rentVa lue = th is . op t ions . i n i t i a l V a l u e ;
6 } ,
7 }) ;

Piece by piece 46 / 55

What comes next?

Excursion: Event
namespaces

Piece by piece 47 / 55

Event namespaces - a mostly unknown feature

I Group registered events by a certain identifier

I As usual use bind in order to listen for events

I Namespaces and event types separated using a dot (.)
I eg. click.namespace

I Namespaces allow easy de-registration/management
I .unbind("click.namespace")
I .unbind(".namespace")

Piece by piece 47 / 55

Event namespaces in widget development

I Always use event namespaces inside your widgets

I Use the widget identifier as namespace

I No conflict between your event handlers and others

I Easy de-registration possible without remembering the
callback

Piece by piece 48 / 55

What comes next?

Visual Appearance

Piece by piece 49 / 55

CSS formatting in widgets

I Use CSS rules for visual formatting if possible

I Decoupling of functionality and representation

I Store CSS in appropriate position
I jquery.ui.sparklebar.css

I Always use classes not ids (multiple invocation)

I Use widget name and namespace as prefix
I ui-sparklebar-container

I Follow the hierarchy of your elements
I ui-sparklebar-container-bar

Piece by piece 49 / 55

ThemeRoller - An online theme creator

I ThemeRoller is a WYSIWYG application to design themes

I Specifically written for jQuery UI

I Realized as a web application

I Creates needed CSS themes & images on the fly

Piece by piece 50 / 55

ThemeRoller

I Custom Widgets can profit from ThemeRoller as well

I Use jQuery-UI CSS framework for your elements

I Just a set of predefined CSS classes

Piece by piece 51 / 55

ThemeRoller

I Structural helper
I ui-helper-hidden, ui-helper-clearfix, ...

I Widget look and feel
I ui-widget-header, ui-widget-content, ...

I Button and input element marker
I ui-priority-primary, ui-state-default, ...

I Visual states
I ui-state-highlight, ui-state-error, ...

I Icons
I ui-icon, ui-icon-folder-collapsed, ...

Piece by piece 52 / 55

What comes next?

Conclusion

Piece by piece 53 / 55

What you have learned today - In general

1. Obey the filename rules: jquery.namespace.widget.js

2. Use the Widget factory ($.widget)

3. Don’t be afraid of using many options

4. Always use Event namespaces to register events

5. Prefix your CSS classes with the widget name, follow the
hierarchy

Piece by piece 53 / 55

What you have learned today - In general

1. Obey the filename rules: jquery.namespace.widget.js

2. Use the Widget factory ($.widget)

3. Don’t be afraid of using many options

4. Always use Event namespaces to register events

5. Prefix your CSS classes with the widget name, follow the
hierarchy

Piece by piece 53 / 55

What you have learned today - In general

1. Obey the filename rules: jquery.namespace.widget.js

2. Use the Widget factory ($.widget)

3. Don’t be afraid of using many options

4. Always use Event namespaces to register events

5. Prefix your CSS classes with the widget name, follow the
hierarchy

Piece by piece 53 / 55

What you have learned today - In general

1. Obey the filename rules: jquery.namespace.widget.js

2. Use the Widget factory ($.widget)

3. Don’t be afraid of using many options

4. Always use Event namespaces to register events

5. Prefix your CSS classes with the widget name, follow the
hierarchy

Piece by piece 53 / 55

What you have learned today - In general

1. Obey the filename rules: jquery.namespace.widget.js

2. Use the Widget factory ($.widget)

3. Don’t be afraid of using many options

4. Always use Event namespaces to register events

5. Prefix your CSS classes with the widget name, follow the
hierarchy

Piece by piece 53 / 55

What you have learned today - About the factory

1. State of your Widget is preserved

2. Properties are always private, methods can be (underscore)

3. The fluent interface is taken care of if no value is returned

4. User options and defaults are automatically merged

5. create is the right place to manifest your widget in the DOM

6. init is the right place to initialize the widgets state

Piece by piece 54 / 55

What you have learned today - About the factory

1. State of your Widget is preserved

2. Properties are always private, methods can be (underscore)

3. The fluent interface is taken care of if no value is returned

4. User options and defaults are automatically merged

5. create is the right place to manifest your widget in the DOM

6. init is the right place to initialize the widgets state

Piece by piece 54 / 55

What you have learned today - About the factory

1. State of your Widget is preserved

2. Properties are always private, methods can be (underscore)

3. The fluent interface is taken care of if no value is returned

4. User options and defaults are automatically merged

5. create is the right place to manifest your widget in the DOM

6. init is the right place to initialize the widgets state

Piece by piece 54 / 55

What you have learned today - About the factory

1. State of your Widget is preserved

2. Properties are always private, methods can be (underscore)

3. The fluent interface is taken care of if no value is returned

4. User options and defaults are automatically merged

5. create is the right place to manifest your widget in the DOM

6. init is the right place to initialize the widgets state

Piece by piece 54 / 55

What you have learned today - About the factory

1. State of your Widget is preserved

2. Properties are always private, methods can be (underscore)

3. The fluent interface is taken care of if no value is returned

4. User options and defaults are automatically merged

5. create is the right place to manifest your widget in the DOM

6. init is the right place to initialize the widgets state

Piece by piece 54 / 55

What you have learned today - About the factory

1. State of your Widget is preserved

2. Properties are always private, methods can be (underscore)

3. The fluent interface is taken care of if no value is returned

4. User options and defaults are automatically merged

5. create is the right place to manifest your widget in the DOM

6. init is the right place to initialize the widgets state

Piece by piece 54 / 55

Thanks for Listening

Questions? Comments? Critics? Ideas?
Please rate this talk at

https://joind.in/6103

Piece by piece 55 / 55

https://joind.in/6103

	About Me
	jQuery
	jQuery-UI
	Widgets
	Behaviors
	Effects
	Animation Enhancements
	Calling conventions
	Creating your own Widget
	Widget Factory
	Example Widget
	Initialization
	Methods / Properties
	Options
	Excursion: Event namespaces
	Visual Appearance
	Conclusion

