Piece by piece
An introduction to jQuery-Ul widget development

Jakob Westhoff <jakob@qgafoo.com>

Confoo.ca
March 2, 2012

Piece by piece 1/55

About Me

» More than 10 years of

profesgional PHP Working with
experience

» More than 7 years of 32
professional JavaScript pession for soffware qualiy
experience

» Open source enthusiast

» Regular speaker at
(inter)national conferences

» Consultant, Trainer and
Author

Piece by piece 2/55

About Me

» More than 10 years of
professional PHP
experience

» More than 7 years of
professional JavaScript
experience

» Open source enthusiast

» Regular speaker at
(inter)national conferences

» Consultant, Trainer and
Author

Piece by piece

Working with

passion for soffware quality

We help people to create
high quality web
applications.

2/55

About Me

» More than 10 years of
professional PHP
experience

» More than 7 years of
professional JavaScript
experience

» Open source enthusiast

» Regular speaker at
(inter)national conferences

» Consultant, Trainer and
Author

Piece by piece

Working with

passion for soffware quality

We help people to create
high quality web
applications.

http://qafoo.com

2/55

http://qafoo.com

Questions answered today

1. What is jQuery?
What is jQuery UI?
What features and widgets does jQuery Ul provide?

In which way can jQuery Ul be used to write own widgets?

o &> 0w b

How does the jQuery Ul Theme generation/usage work?

Piece by piece

51/155

What comes next?

Piece by piece

jQuery

6/55

jQuery about itself

v

Fast and concise JavaScript library

v

HTML document traversing

v

Event handling
Animation

AJAX

\{

v

Piece by piece 6/55

Working with jQuery

$(".tooltip”).addClass("highlight”).fadeln("slow”);

Piece by piece

7/55

Working with jQuery

$(”.tooltip”).addClass(”highlight”).fadeln("slow”);

» Document centric

» Operates on sets accessed using $ or jQuery

» $(css selector) . operation
» jQuery(css selector) . operation

» Fluent interface paradigm
» operation() .operation() .operation()

Piece by piece 7155

What comes next?

jQuery-Ul

jQuery-Ul about itself

From the jQuery-Ul Website:

jQuery Ul provides abstractions for low-level interaction and
animation, advanced effects and high-level, themeable widgets,
built on top of the jQuery JavaScript Library, that you can use to
build highly interactive web applications.

Piece by piece 8/55

jQuery-Ul - A short overview

> A set of high level widgets

» Low level framework to create own Widgets, Behaviors and
Effects

» Compatible with all major Browsers (thanks to jQuery)
» Modular code base between 5-220kb

» Fully themeable using a graphical tool: ThemeRoller
» Highly extensible

» Download: http://jqueryui.com

Piece by piece 9/55

What comes next?

Piece by piece

Widgets

10/55

Widgets included in jQuery Ul

» Accordion

v

Autocomplete

v

Button

v

Dialog
Slider
Tabs

v

v

v

Datepicker

v

Progressbar

Piece by piece 10/55

Live Demo

Live Demo - jQuery Ul Widgets

Live Demo

Piece by piece 11/55

Accordion

Section 1

Mauris mauris ante, blandit et, ultrices a, suscipit eget, quam. Integer ut neque.
Vivamus nisi metus, molestie vel, gravida in, condimentum sit amet, nunc. Nam a
nibh. Donec suscipit eros. Nam mi. Proin viverra leo ut odio. Curabitur malesuada.
Vestibulum a velit eu ante scelerisque vulputate.

Section 2
Section 3

Section 4

Piece by piece

Accordion

Section 1

Section 2

Sed non urna. Donec et ante. Phasellus eu ligula. Vestibulum sit amet purus. Vivamus
hendrerit, dolor at aliquet laoreet, mauris turpis porttitor velit, faucibus interdum
tellus libero ac justo. Vivamus non quam. In suscipit faucibus urna.

Piece by piece

Section 3

Section 4

Accordion

Section 1

Section 2

Section 3

Nam enim risus, molestie et, porta ac, aliquam ac, risus. Quisque lobortis. Phasellus
pellentesque purus in massa. Aenean in pede. Phasellus ac libero ac tellus
pellentesque semper. Sed ac felis. Sed commodo, magna quis lacinia ornare, quam
ante aliquam nisi, eu iaculis leo purus venenatis dui.

* List item one
e List item two
* List item three

Piece by piece

Section 4

Autocomplete

Tags: |Script
ActionScript

AppleScript

JavaScript

Piece by piece

13/55

Buttons

Piece by piece

A button element][A submit button][An anchor]

14/55

Dialog

Basic modal dialog x

Adding the modal overlay screen makes the dialog
look more prominent because it dims out the page

content.

Piece by piece 15/55

Slider

Piece by piece 16/55

Tabs

_ Proin dolor Aenean lacinia

Proin elit arcu, rutrum commodo, vehicula tempus, commodo a, risus. Curabitur nec arcu. Donec

sollicitudin mi sit amet mauris. Nam elementum quam ullamcorper ante. Etiam aliquet massa et
lorem. Mauris dapibus lacus auctor risus. Aenean tempor ullamcorper leo. VVivamus sed magna
quis ligula eleifend adipiscing. Duis orci. Aliquam sodales tortor vitae ipsum. Aliqguam nulla. Duis
aliquam molestie erat. Ut et mauris vel pede varius sollicitudin. Sed ut dolor nec orci tincidunt
interdum. Phasellus ipsum. Nunc tristique tempus lectus.

Piece by piece

17 /55

Datepicker

Date: [10/14/2010 \
[4] October 2010

Su Mo Tu We Th Fr

1
S ¢

) 12 [15
17 18 19 20 21 22

24 25 26 27 28 29
£l

Piece by piece 18/55

Progressbar

Piece by piece 19/55

What comes next?

Behaviors

Piece by piece 20/55

Behaviors included in jQuery Ul

v

Draggable

v

Droppable

Resizable

v

Selectable

\{

Sortable

v

Piece by piece 20/55

What comes next?

Piece by piece

Effects

21/55

Effects included in jQuery Ul

» Blind
» Bounce
» Clip
» Drop

v

Explode
Fold
Highlight

v

v

v

Pulsate

Piece by piece 21/55

What comes next?

Animation
Enhancements

Piece by piece

Animation Enhancements over default jQuery

» Color animations

» New easing functions
» easelInBounce
> easeInQuad

> ee

» CSS class based animation

Piece by piece

22/55

What comes next?

Calling conventions

Piece by piece

Calling conventions

» For each widget (behavior) one function is registered

» The function can be called on any created jQuery set
(jQuery. fn)

» The widgets name is used as function name

» All interaction with the Widget is accomplished through this
function

Piece by piece 23/55

Calling conventions

» Widget creation

$("#id ") .autocomplete () ;
$(’#id ") .autocomplete ({...

Piece by piece

24/55

Calling conventions

» Widget creation

("#id ") .autocomplete (

$)
$("#id”).autocomplete ({...});

> Invoking a method without arguments

$("#id ") .autocomplete ("method”) ;

Piece by piece 24 /55

Calling conventions

» Widget creation

("#id ") .autocomplete (

$)
$("#id”).autocomplete ({...});

> Invoking a method without arguments

$("#id”).autocomplete ("method”) ;

» Invoking a method with arguments

$("#id”).autocomplete ("method”, argi,

Piece by piece

arg2,

24/55

What comes next?

Creating your own
Widget

Piece by piece

Creating a Widget without jQuery-UI

v

Widgets usually have a state

» Excessive use of .data method
» Nested closures and custom objects

\{

Different initialization phases

v

Handling of default and user options

v

Multiple public methods

\{

Destruct and remove Widget on request

Piece by piece

257/155

What comes next?

Widget Factory

The Widget factory of jQuery-Ul

v

DOM-Instance based persistent states

v

"Magic” methods for different initialization phases

v

Automatic merging of default and user supplied options

v

Custom methods without namespace pollution

v

Distinguish between public and private methods

Piece by piece 26 /55

What comes next?

Example Widget

Piece by piece

The SparkleBar Widget

» A custom made progressbar
> Less flexible due to heavy usage of images

» More sophisticated graphical design possible

(lss444400)

Piece by piece 27 /55

Live Demo

Live Demo - SparkleBar

Piece by piece

Live Demo

28/55

Filename conventions

» Name of this widget: sparklebar

» Namespace of this widget: ui

» All widgets should follow a certain filename convention:

> jquery.ui.sparklebar.js
> jquery.ui.sparklebar.css
> jquery.ui.sparklebar/image.png

> e

Piece by piece

29/55

The widget factory in action

v

Call $.widget to create a new Widget

v

First argument: namespace and identifier

v

Namespaces do not protect against naming conflicts

v

All default widgets use the ui namespace

v

Using the ui namespace for your own widgets is just fine

Piece by piece 30/55

The widget factory in action

$.widget (
‘ui.sparklebar’,

{

/+ Widget implementation =/

}

Piece by piece 31/55

What comes next?

Initialization

Piece by piece

32/55

"Magic” _create method

» create function is automatically invoked on widget creation

» Only called once for each widget

Piece by piece 32/55

Access to the targeted element

» Targeted element stored in element property
» Saved as jQuery set

» Other magic properties exist: options, widgetName,
widgetEventPrefix

Piece by piece 33/55

"Magic” _create method

$.widget("ui.sparklebar”, {
_create: function() {

this.element.empty () ;
$('<img./>").appendTo(
this.element

)

// ... Set needed properties of img

Piece by piece

34/55

"Magic” _create method

$.widget("ui.sparklebar”, {
_create: function () {

this.element.empty () ;
$('<img./>").appendTo(
this.element

)

// ... Set needed properties of img

Piece by piece 34 /55

"Magic” _create method

$.widget("ui.sparklebar”, {
_create: function() {

this.element.empty () ;
$('<img./>") .appendTo(
this.element

)

// ... Set needed properties of img

Piece by piece

34/55

"Magic” _create method

$.widget("ui.sparklebar”, {
_create: function() {

this.element.empty () ;
$('<img./>").appendTo(

this.element

IE

/l ... Set needed properties of img ...

Piece by piece

34/55

"Magic” _init method

» _init is invoked every time the widget function is called
without a method name
» $("#id") .sparklebar()

» $("#id") .sparklebar({...})
» Little brother of the _create function

» Called after _create has been called

Piece by piece B5YI55)

"Magic” _init method

$.widget("ui.sparklebar”, {
_init: function () {

// Set DOM properties based on provided options
// Initialize state of the widget

Piece by piece

36/55

"Magic” _init method

$.widget("ui.sparklebar”, {
_init: function() {

// Set DOM properties based on provided options
// Initialize state of the widget

Piece by piece

36/55

"Magic” _init method

$.widget("ui.sparklebar”, {
_init: function () {

// Set DOM properties based on provided options
// Initialize state of the widget

Piece by piece

36/55

_init and create

» Use _create to prepare the DOM for the widget

» Use _init to initialize widget based on options

Piece by piece 37/55

What comes next?

Methods / Properties

Piece by piece

Widget methods and properties

» Use custom properties and methods to structure your code

» Both are defined in the Widget object

Piece by piece 38/55

Widget methods and properties

» Use custom properties and methods to structure your code

» Both are defined in the Widget object

$.widget(
‘ui.sparklebar’,
{
‘currentValue ': 42
‘value ": function() {...}

Piece by piece 38/55

One instance per Widget

> A new instance is created for each Widget invocation

» Properties are persistent

Piece by piece 39/55

One instance per Widget

> A new instance is created for each Widget invocation

» Properties are persistent
$.widget("ui.sparklebar”, {

"value”: function(val) {
this.currentValue = val;

// Display progressbar change

Piece by piece

39/55

Fluent interface and returned values

» Widget factory takes care of fluent interface handling

» Returning a value from a method circumvents this behavior

Piece by piece 40 /55

Fluent interface and returned values

» Widget factory takes care of fluent interface handling
» Returning a value from a method circumvents this behavior

$.widget("ui.sparklebar”, {
getValue: function(val) {
return this.currentValue;

}
1)

Piece by piece

40/55
2 Qoafoo

Private methods

» Methods prefixed with underscore (_) are private

» Properties are always private

Piece by piece 41/55

Private methods

» Methods prefixed with underscore (_) are private
» Properties are always private
$.widget("ui.sparklebar”, {

_updateVisualRepresentation: function () {

}
1)

Piece by piece

41/55
2 (Jofoo

What comes next?

Piece by piece

Options

42/55

Configuration options for your widget

» Most widgets need configuration in order to be reusable
» Named options can be provided during widget creation

» Remember: §("#id") .sparklebar({...})

Piece by piece 42 /55

Handling of Options

» Options are stored in the magic options property
» Options are always optional

» Default values need to be provided for each option

Piece by piece 43 /55

Handling of Options - options property

$.widget("ui.sparklebar”, {
options: {
color: ’orange’,
initialValue: 0,
animate: true
I
1

Piece by piece 44 /55

Handling of Options - Access merged options

» Default options are automatically merged with user options

» Result is written back to the options property

Piece by piece 45/55

Handling of Options - Access merged options

$("#id”).sparklebar ({initialValue: 40});

$.widget(’'ui.sparklebar’, {
_init: function () {
this.currentValue = this.options.initialValue;
},
1

Piece by piece 46 /55

What comes next?

Excursion: Event
namespaces

Piece by piece

Event namespaces - a mostly unknown feature

v

Group registered events by a certain identifier

v

As usual use bind in order to listen for events

v

Namespaces and event types separated using a dot (.)
> eg. click.namespace

v

Namespaces allow easy de-registration/management

> .unbind("click.namespace")
> .unbind(".namespace™)

Piece by piece 47 /55

Event namespaces in widget development

v

Always use event namespaces inside your widgets

v

Use the widget identifier as namespace

v

No conflict between your event handlers and others

v

Easy de-registration possible without remembering the
callback

Piece by piece 48/55

What comes next?

Visual Appearance

Piece by piece

CSS formatting in widgets

v

Use CSS rules for visual formatting if possible

v

Decoupling of functionality and representation

v

Store CSS in appropriate position
> jquery.ui.sparklebar.css

v

Always use classes not ids (multiple invocation)

v

Use widget name and namespace as prefix
» ui-sparklebar-container

v

Follow the hierarchy of your elements
» ui-sparklebar-container-bar

Piece by piece 49 /55

ThemeRoller - An online theme creator

v

ThemeRoller is a WYSIWYG application to design themes

v

Specifically written for jQuery Ul

v

Realized as a web application

v

Creates needed CSS themes & images on the fly

Piece by piece 50/55

ThemeRoller

» Custom Widgets can profit from ThemeRoller as well
» Use jQuery-Ul CSS framework for your elements

» Just a set of predefined CSS classes

Piece by piece 51/55

ThemeRoller

» Structural helper
> ui-helper-hidden, ui-helper-clearfix, ...

v

Widget look and feel

> ui-widget-header, ui-widget-content, ...

v

Button and input element marker
» ui-priority-primary, ui-state-default, ...

v

Visual states
» ui-state-highlight, ui-state-error, ...

v

Icons
» ui-icon, ui-icon-folder-collapsed, ...

Piece by piece 52 /55

What comes next?

Conclusion

Piece by piece 53/55

What you have learned today - In general

1. Obey the filename rules: jquery.namespace.widget.js

Piece by piece

53 /55

What you have learned today - In general

1. Obey the filename rules: jquery.namespace.widget.js

2. Use the Widget factory ($.widget)

Piece by piece 53/55

What you have learned today - In general

1. Obey the filename rules: jquery.namespace.widget.js
2. Use the Widget factory ($.widget)

3. Don't be afraid of using many options

Piece by piece 53/55

What you have learned today - In general

1. Obey the filename rules: jquery.namespace.widget.js
2. Use the Widget factory ($.widget)
3. Don't be afraid of using many options

4. Always use Event namespaces to register events

Piece by piece 53 /55

What you have learned today - In general

1. Obey the filename rules: jquery.namespace.widget.js
Use the Widget factory ($.widget)
Don’t be afraid of using many options

Always use Event namespaces to register events

o &~ oD

Prefix your CSS classes with the widget name, follow the
hierarchy

Piece by piece 53 /55

What you have learned today - About the factory

1. State of your Widget is preserved

Piece by piece

54 /55

What you have learned today - About the factory

1. State of your Widget is preserved

2. Properties are always private, methods can be (underscore)

Piece by piece 54 /55

What you have learned today - About the factory

1. State of your Widget is preserved
2. Properties are always private, methods can be (underscore)

3. The fluent interface is taken care of if no value is returned

Piece by piece 54 /55

What you have learned today - About the factory

1. State of your Widget is preserved
2. Properties are always private, methods can be (underscore)
3. The fluent interface is taken care of if no value is returned

4. User options and defaults are automatically merged

Piece by piece 54 /55

What you have learned today - About the factory

1. State of your Widget is preserved
Properties are always private, methods can be (underscore)
The fluent interface is taken care of if no value is returned

User options and defaults are automatically merged

o M b

_create is the right place to manifest your widget in the DOM

Piece by piece 54 /55

What you have learned today - About the factory

1. State of your Widget is preserved

Properties are always private, methods can be (underscore)
The fluent interface is taken care of if no value is returned
User options and defaults are automatically merged

_create is the right place to manifest your widget in the DOM

I

_init is the right place to initialize the widgets state

Piece by piece 54 /55

Thanks for Listening

Questions? Comments? Critics? Ideas?

Please rate this talk at

https://joind.in/6103

Piece by piece [813) /7 (515)

https://joind.in/6103

	About Me
	jQuery
	jQuery-UI
	Widgets
	Behaviors
	Effects
	Animation Enhancements
	Calling conventions
	Creating your own Widget
	Widget Factory
	Example Widget
	Initialization
	Methods / Properties
	Options
	Excursion: Event namespaces
	Visual Appearance
	Conclusion

