
Decoupling with (Domain-)Events
SymfonyCon Warsaw

Benjamin Eberlei (@beberlei)
December 2013

Me

I Working at Qafoo

We offer trainings and consulting to help our customers
create high quality code.
http://qafoo.com

I Doctrine Developer

I Symfony Contributor

I Twitter @beberlei and @qafoo

http://qafoo.com

Outline

Motivation

Example

Events

Technical Implications

Domain Events

Empirical Observation

Just using Symfony and Doctrine
does not prevent us from creating

high coupling and legacy code.

Our Mistakes

Thinking in technical use-cases

.. leads to huge controllers

Our Mistakes

One model to rule them all

.. leads to monolithic object-graphs

Our Mistakes

No abstraction of business rules

.. prevents reusability of code

What would we prefer?

I Small controllers
I Reusable business logic
I Recombinable business logic
I Decoupled bundles

Outline

Motivation

Example

Events

Technical Implications

Domain Events

Example: Establish Contact

I User A requests Contact to User B
I Contact request triggers:

I notification mail
I activity stream item

I Accept or Decline contact requests
I with notifications again

I Accepting contact notifies other systems, example:
I Synchronization of data
I Indexing
I Payment
I Metrics/Logging

Example: Establish Contact

Example: Establish Contact

Demo

Questions

I Does creating services solve the problem?
I How many dependencies has the controller?
I To which bundles do the controller dependencies link?
I To which bundles do the entity dependencies link?
I How would you enable/disable/recombine features?

Fixing Service Dependencies

I Apply Dependency Inversion (SOLID principles)
I Use interfaces for operations/services
I Bundle that uses operation provides interface
I Other bundle implements that interface

Example: Establish Contact

Fixing Entity Dependencies: Bounded Contexts

A BOUNDED CONTEXT delimits the applicability of a
particular model so that team members have a clear and
shared understanding of what has to be consistent and
how it relates to other
CONTEXTS. (Evans in Domain-Driven Design)

Example: Establish Contact

Problems

That still leads us with

I a hardcoded process/workflow
I too many dependencies in the controllers
I cognitive overload, everything is important

Outline

Motivation

Example

Events

Technical Implications

Domain Events

What are Events?

An event can be defined as a
significant change in
state (Wikipedia)

Using Events

I State change makes the event happen
I Application creates Message Object for the event
I Message Object is passed to a dispatcher/publisher
I Listeners are notified of the event

Allows decoupling compontents even more!

Outline

Motivation

Example

Events

Technical Implications

Domain Events

Properties of Event Messages

I No return value?
I No way to stop execution/propagatoin?
I Failure does not affect the event emitter?
I Asynchronous?
I Serializable?

Complexity through Event-based Architecture

I ACID transactions
I Requires two-phase commit between datastorage and event

dispatcher
I Leads to complicated transaction management

I BASE transactions
I Eventually Consistent data storage
I Enables ”pull task”-based systems
I Developers responsibility to handle failures

Outline

Motivation

Example

Events

Technical Implications

Domain Events

Discussion between Developers

Developer A: Where do you handle the case to send an
email for a newly established contact between users?

Developer B: In the
ContactRequestCreatedPrePersistListener when
the prePersist Event happens.

Discussion between Developers

Developer A: How do you differentiate between a contact
request triggerd by the user and batch import?

Developer B: By using a kernel.request listener that
sets a boolean flag on the
ContactRequestCreatedPrePersistListener for
being inside a web-request. Only if the flag is true the
email is sent.

A note on Symfony and Doctrine Events

Symfony and Doctrine events solve problems in the
framework and database persistence contexts.

Hiding your business rules in them will cause pain.

Domain Events

”Something happend that domain experts care about”

I Events for state changes in the model
I in terms of the business
I tied to the execution of use-cases
I explicit in code

Event Storming

Example: Establish Contact

I ContactRequested

I ContactEstablished

I ContactConfirmed

I ContactDeclined

I ContactImported

Approach 1: Procedural

Approach 1: Procedural

1 <?php
2 class Con tac tCon t ro l l e r
3 {

4 public function reques tAc t ion (Request $request)
5 {

6 / / . . .
7 $eventDispatcher = $ th is −>get (’ even t d i spa tcher ’) ;
8 $eventDispatcher−>pub l i sh (
9 ’ con tac t . requested ’ ,

10 new ContactRequestedEvent ($contactRequest)
11) ;
12 / / . . .
13 }

14 }

Approach 1: Procedural

Benefits:
I Loose coupling
I Works with getters/setters and forms
I Can be easily added to existing (CRUD-)application

Drawbacks:
I Requires access to EventDispatcher in many places
I No two-phase commit between DB+Events
I Easy to forget triggering same event in other

actions/commands

Approach 2: Events as state

Approach 2: Events as state

1 <?php
2

3 class ContactRequest
4 {

5 private $events = ar ray () ;
6

7 public function construct ($fromUser , $toUser)
8 {

9 $ th is −>fromUser = $fromUser ;
10 $ th is −>toUser = $toUser ;
11

12 $ th is −>events [] = new ContactRequestedEvent ($ t h i s) ;
13 }

14 }

Approach 2: Events as state

1 <?php
2

3 class ContactRequest
4 {

5 private $events = ar ray () ;
6

7 public function conf i rm ()
8 {

9 $ th is −>conf i rmed = true ;
10

11 $ th is −>events [] = new ContactConfirmedEvent ($ t h i s) ;
12 }

13 }

Approach 2: Events as state

Benefits:
I Loose coupling
I Events are always created when state changes
I No dispatcher required in the model code
I Dispatching of events IFF storage tx successful
I Enables Event Sourcing

Drawbacks:
I Requires deep integration into Doctrine
I Does not work well with forms (unless..)

Conclusion

Decoupling can be achieved with

I interfaces for dependency inversion
I cutting the assocations between entities
I using events to communicate between bundles

Further Readings

I http://www.whitewashing.de/2013/07/24/doctrine and domainevents.html

I http://www.whitewashing.de/2013/06/24/bounded contexts.html

I http://www.whitewashing.de/2013/06/27/extending symfony2 controller utilities.html

I http://verraes.net/2013/04/decoupling-symfony2-forms-from-entities/

https://joind.in/talk/view/10369

	Motivation
	Example
	Events
	Technical Implications
	Domain Events

