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Empirical Observation

Just using Symfony and Doctrine
does not prevent us from creating
high coupling and legacy code.




Our Mistakes

Thinking in technical use-cases

.. leads to huge controllers




Our Mistakes

One model to rule them all

.. leads to monolithic object-graphs




Our Mistakes

No abstraction of business rules

.. prevents reusability of code




What would we prefer?

v

Small controllers

v

Reusable business logic

v

Recombinable business logic

v

Decoupled bundles
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Example: Establish Contact

» User A requests Contact to User B
Contact request triggers:
> notification mail
» activity stream item
Accept or Decline contact requests
» with notifications again
Accepting contact notifies other systems, example:

» Synchronization of data
> Indexing

» Payment

» Metrics/Logging

v

v

v
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Example: Establish Contact
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Example: Establish Contact

Demo




Questions

v

Does creating services solve the problem?

v

How many dependencies has the controller?

To which bundles do the controller dependencies link?
To which bundles do the entity dependencies link?
How would you enable/disable/recombine features?

v

v

v
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Fixing Service Dependencies

v

Apply Dependency Inversion (SOLID principles)

v

Use interfaces for operations/services

v

Bundle that uses operation provides interface

v

Other bundle implements that interface
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Example: Establish Contact
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Fixing Entity Dependencies: Bounded Contexts

A BOUNDED CONTEXT delimits the applicability of a
particular model so that team members have a clear and
shared understanding of what has to be consistent and
how it relates to other

CONTEXTS. (Evans in Domain-Driven Design)
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Example: Establish Contact

Userid
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Problems

That still leads us with

» a hardcoded process/workflow
» too many dependencies in the controllers
» cognitive overload, everything is important
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What are Events?

An event can be defined as a
significant change in
State (Wikipedia)




Using Events

v

State change makes the event happen

v

Application creates Message Object for the event
Message Object is passed to a dispatcher/publisher
Listeners are notified of the event

v

v

Allows decoupling compontents even more!
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Technical Implications
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Properties of Event Messages

» No return value?

v

No way to stop execution/propagatoin?
Failure does not affect the event emitter?

v

v

Asynchronous?
Serializable?

v
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Complexity through Event-based Architecture

» ACID transactions
» Requires two-phase commit between datastorage and event
dispatcher
» Leads to complicated transaction management
» BASE transactions

» Eventually Consistent data storage
» Enables "pull task™-based systems
» Developers responsibility to handle failures
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Domain Events
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Discussion between Developers

(an)
Developer A: Where do you handle the case to send an
email for a newly established contact between users?

Developer B: In the
ContactRequestCreatedPrePersistListener when
the prePersist Event happens.
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Discussion between Developers

=)

Developer A: How do you differentiate between a contact
request triggerd by the user and batch import?

Developer B: By using a kernel . request listener that
sets a boolean flag on the
ContactRequestCreatedPrePersistlListener for
being inside a web-request. Only if the flag is true the
email is sent.
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A note on Symfony and Doctrine Events

Symfony and Doctrine events solve problems in the
framework and database persistence contexts.

Hiding your business rules in them will cause pain.
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Domain Events

"Something happend that domain experts care about”

» Events for state changes in the model

> in terms of the business
> tied to the execution of use-cases
» explicit in code
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Event Storming
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Example: Establish Contact

v

ContactRequested
ContactEstablished

v

ContactConfirmed

v

ContactDeclined

v

v

ContactImported
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Approach 1: Procedural

Covtact contaller

cfeates

ContactRequest edEvent
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Approach 1: Procedural

<?php
class ContactController
{
public function requestAction (Request $request)
{
/1
$eventDispatcher = $this—>get( ' event_dispatcher’);
$eventDispatcher—>publish (
‘contact.requested’,
new ContactRequestedEvent($contactRequest)
);
/1
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Approach 1: Procedural

Benefits:
» Loose coupling
» Works with getters/setters and forms
» Can be easily added to existing (CRUD-)application
Drawbacks:
» Requires access to EventDispatcher in many places
> No two-phase commit between DB+Events

» Easy to forget triggering same event in other
actions/commands
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Approach 2: Events as state

ContactReqaest
f

eates
v
ContactRequest edEvent
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NetificationListener

Activitystreamlistener
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Approach 2: Events as state

<?php

class ContactRequest

{

private $events = array();

public function __construct($fromUser, $toUser)
{

$this —>fromUser = $fromUser;

$this —>toUser = $toUser;

$this —>events[] new ContactRequestedEvent($this);
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Approach 2: Events as state

<?php
class ContactRequest
{ private $events = array();
public function confirm ()
{ $this —>confirmed = true;
$this —>events[] = new ContactConfirmedEvent($this);
}
}
Qafoo




Approach 2: Events as state

Benefits:
» Loose coupling
» Events are always created when state changes
» No dispatcher required in the model code
» Dispatching of events IFF storage tx successful
» Enables Event Sourcing
Drawbacks:
» Requires deep integration into Doctrine
» Does not work well with forms (unless..)
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Conclusion

Decoupling can be achieved with

» interfaces for dependency inversion
» cutting the assocations between entities
» using events to communicate between bundles
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Further Readings

http://www.whitewashing.de/2013/07/24/doctrine_and-domainevents.html
http://www.whitewashing.de/2013/06/24/bounded_contexts.html
http://www.whitewashing.de/2013/06/27/extending_symfony2__controller_utilities.html
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http://verraes.net/2013/04/decoupling-symfony2-forms-from-entities/
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