
This document is copyrighted by Qafoo GmbH. It might contain
confidential information and may therefore not be distributed to third
parties without explicit permission. Wikimedia Deutschland e.V. has the
permission to publish this report in its final version.

Code Review
Wikibase

Tobias Schlitt

Qafoo GmbH - Code Review

1 Executive Summary
The quality of the Wikibase source code is generally better than in the average
PHP project. Especially the derived projects Ask, DataValues and Diff consist of
well crafted code.

The most pressing identified issues in the PHP code consist of a too high code
complexity of multiple code entities. This leads to a decreased maintainability,
because complex code is harder to understand by humans and code pieces
cannot easily be replaced. As a result, the implementation of new features and
the fixing of errors in the affected code take more time and are more error
prone. In addition, implementation of automated tests is harder.

For these reasons, a re-factoring of the corresponding code artifacts is
recommended. Approaches to achieve this were elaborated as a part of the
code review and are discussed within this report.

The mentioned issues occur more frequently and to a larger degree in the
Wikibase extension itself. They are almost absent in the derived extensions.

The overall project infrastructure of the Wikibase project is really good. The
utilization of a mixture of unit, integration and front-end tests is commendable.
This also applies to the development process, especially to the realized code
review process. The source code is extraordinarily well documented. With
regard to the test-mixture those observations are true, for the PHP as well as
the JavaScript part of the project. Currently the JavaScript implementations only
utilize Unit-Testing.

Many of the identified JavaScript problems arise from the usage of jQuery-UI. A
lot of functionality needs to be recreated, which can already be found in other
modern frameworks. For the needs of the Wikibase project, AngularJS1 is a good
fit.

1 http://angularjs.org

http://qafoo.com, contact@qafoo.com 1

http://angularjs.org/

Qafoo GmbH - Code Review

• Table of Contents
1 Executive Summary..1
2 Introduction..3

2.1 Environment..3
2.2 Project Overview..4

3 Analysis..4
3.1 PHP..5
3.2 JavaScript...10

4 Solution Approaches...12
4.1 Dependency Injection..12
4.2 Controllers...19
4.3 Parsers & Serializers..19

5 Action Items..22
6 Appendix..22

6.1 PHP..23
6.2 JavaScript...35

http://qafoo.com, contact@qafoo.com 2

Qafoo GmbH - Code Review

2 Introduction
The basis for this report was a code review of the Wikibase2 extension, the code
basis behind the Wikidata3 project, commissioned by Wikimedia Deutschland -
Gesellschaft zur Förderung Freien Wissens e.V. The review was mainly
conducted by Qafoo employee Tobias Schlitt, supported by Jakob Westhoff for
JavaScript expertise.

In this chapter, the project under review and the environment are introduced.
The next chapter summarizes the results of the review without going into
further detail yet. After that, the approaches to fix some of the most pressing
identified issues are elaborated, which have been worked out by the reviewer
together with the Wikibase development team. Finally, the findings of this
report are concluded with a set of actionable items.

The subsequent appendix reflects the original review notes.

2.1 Environment
Subject of this code review is the Wikibase extension for the MediaWiki4
software, which is the code basis for the Wikidata5 project that is a sister
project of Wikipedia6. Since Wikibase spun off the extensions Ask, DataValues
and Diff, which are still used in the Wikibase project, these extensions were
also included into the review.

The following Git revisions of the projects were included in the review (linking
to Gerrit for browsing the revisions on the web):

• Wikibase: 86556a7eedd115c3781e05c3ce013b6ea14d2b6c
(April 5th 2013)

• Ask: fcac41b029f2716b41340ebf123ee38ac102ca3c
(April 7th 2013)

• DataValues: 5a9f4e26ca8cecbff138831c7fe2dde98d764abb
(April 10th 2013)

• Diff: fe3441d7481f47981d2ed8c4bc28af3bbdfccec6
(April 3rd)

The scope of the review was to analyze the maintainability, extensibility and
complexity of the project code as well as to investigate the test base.
Furthermore, the review did not focus on pure analysis and the creation of this
report, but on knowledge transfer to the team and elaboration of solution

2 https://www.mediawiki.org/wiki/Extension:Wikibase
3 https://meta.wikimedia.org/wiki/Wikidata
4 https://www.mediawiki.org/wiki/MediaWiki
5 https://www.wikidata.org
6 https://en.wikipedia.org/wiki/Main_Page

http://qafoo.com, contact@qafoo.com 3

https://gerrit.wikimedia.org/r/gitweb?p=mediawiki/extensions/Diff.git;a=commit;h=fe3441d7481f47981d2ed8c4bc28af3bbdfccec6
https://gerrit.wikimedia.org/r/gitweb?p=mediawiki/extensions/DataValues.git;a=commit;h=5a9f4e26ca8cecbff138831c7fe2dde98d764abb
https://gerrit.wikimedia.org/r/gitweb?p=mediawiki/extensions/Ask.git;a=commit;h=fcac41b029f2716b41340ebf123ee38ac102ca3c
https://gerrit.wikimedia.org/r/gitweb?p=mediawiki/extensions/Wikibase.git;a=commit;h=86556a7eedd115c3781e05c3ce013b6ea14d2b6c
https://en.wikipedia.org/wiki/Main_Page
https://www.wikidata.org/
https://www.mediawiki.org/wiki/MediaWiki
https://meta.wikimedia.org/wiki/Wikidata
https://www.mediawiki.org/wiki/Extension:Wikibase

Qafoo GmbH - Code Review

approaches.

The main focus of the review was put on PHP but a small fraction of the review
time was spent on the JavaScript code base. As a result, the JavaScript remarks
in this report are more superficial and there is no dedicated section about
solution approaches.

2.2 Project Overview
The Wikibase team utilizes Scrum as its development mode, together with
different processes and tools which are roughly described in this section.

The team realizes a code review process to ensure code quality and transfer
knowledge among the team members. Every change set needs to pass this
process before being merged into the Git master branch. There are no
dedicated feature branches in Git. A reviewer merges the change set into
master if the review was successful. Gerrit7 is used as a tool for code review,
mainly because it is also used for MediaWiki development itself and is provided
by the Wikimedia Foundation (WMF) infrastructure team. Gerrit also triggers
unit test execution for each change set in Jenkins.

The team claims to have typically small change sets, which are each connected
to one or more issues in their tracker. As an issue tracker, Bugzilla8 is in place.

Jenkins9 is in place as a continuous integration (CI) system for Wikibase. The
Jenkins server automatically integrates the project against the MediaWiki
master branch. The CI process includes, beside unit test execution, Selenium10
front end tests and JavaScript unit tests, but no software metrics. The Selenium
tests are formulated using PageObjects11 in Ruby. For JavaScript, the QUnit12
framework is utilized. In order to integrate the QUnit results into Jenkins, the
test suite is executed through Selenium.

For PHP unit and integration tests, the PHPUnit13 framework is used. The team
does not obey to the Test Driven Development approach, tests are mostly
written after the production code. In some cases, there are no tests developed
at all.

3 Analysis
This chapter summarizes the findings of the code review and concentrates on
the most essential issues discovered.

7 https://code.google.com/p/gerrit/
8 http://www.bugzilla.org/
9 http://jenkins-ci.org/
10 http://docs.seleniumhq.org/
11 https://code.google.com/p/selenium/wiki/PageObjects
12 http://qunitjs.com/
13 http://qunitjs.com/

http://qafoo.com, contact@qafoo.com 4

http://qunitjs.com/
http://qunitjs.com/
https://code.google.com/p/selenium/wiki/PageObjects
http://docs.seleniumhq.org/
http://jenkins-ci.org/
http://www.bugzilla.org/
https://code.google.com/p/gerrit/

Qafoo GmbH - Code Review

3.1 PHP
The PHP code of the Wikibase extension and its related extensions were
performed in greater detail than the JavaScript review. In addition, a large
portion of the review time was spent to elaborate on potential solutions for the
identified issues which are presented in the next chapter.

3.1.1 Modus Procedendi
The PHP analysis was performed with calculated software metrics as starting
point. On that basis, the Wikibase source code was investigated manually,
following the code flow and hints by the Wikibase development team. After an
overview investigation, the team was presented with the intermediate results
and the subsequent strategy for the review was discussed: Some additional
code pieces were investigated, but most of the time was spent on elaborating
on solution approaches.

The initial review was guided by the following software metrics: The Executable
Lines of Code (ELOC) measure was used to identify the classes with the largest
amount of code, which are suspected to contain large portions of the
application logic. Using the NPath Complexity14 metric, the most complex
methods were identified for investigation. Finally, to identify the classes with
the highest impact on the project, the CodeRank15 metric was used. All metrics
were calculated using PDepend16 with its default settings.

For each metric, the top three code entities were analyzed for the Wikibase
extension source code. For the smaller extensions Ask, DataValues and Diff,
smaller fractions of the top lists were investigated.

The resulting initial analysis was sent to the customer in raw format as a basis
for discussing the further proceeding. Besides smaller investigation request,
the focus was put on elaboration of solution approaches, which are described in
chapter 4.

3.1.2 Summary
The subjective impression of the Wikibase code is better than the average PHP
code base. Especially the derived extensions Ask, Diff and DataValues consist
of well-structured object-oriented code with very few issues. The Wikibase
extension itself appears to suffer especially from the restrictions imposed by
MediaWiki extension points. Overall, the code appears to be really well
documented.

The review of software metrics showed that more than 50 classes in the
Wikibase extension consist of more that 100 ELOC. The classes

14 https://dl.acm.org/citation.cfm?id=42379
15 https://dl.acm.org/citation.cfm?id=1129468
16 http://pdepend.org/

http://qafoo.com, contact@qafoo.com 5

http://pdepend.org/
https://dl.acm.org/citation.cfm?id=1129468
https://dl.acm.org/citation.cfm?id=42379

Qafoo GmbH - Code Review

Wikibase\RepoHooks, Wikibase\DispatchChanges and ChangeHandler are examples for
this evidence. Such high numbers of code lines are generally harder to
maintain as smaller classes, even though much code does not directly imply
complexity.

However, a number of methods with severe NPath complexity measures exists.
Most significantly, the method Wikibase\Api\EditEntity::modifyEntity() shows a
complexity value of 17,336,096. Even the complexity of the top 20 methods
decreases rapidly, all of these hold an NPath value above 1,000. It is highly
advised to re-factor the classes with such a high complexity value in order to
reduce the change risk and simplify automated testing.

It should be noted that, due to its sensitivity, the NPath complexity metric also
turned up some false positives, especially in the DataValues extension. For
example, the constructors of the DataValues\TimeValue and
DataValues\GeoCoordinateValue classes appear with high metric values, while
they only consist of easy to understand parameter validation code. There is no
need to re-factor these occurrences.

The CodeRank metric identified the classes Wikibase\Api\ApiWikibase,
SpecialWikibasePage and ViewEntityAction as the most essential ones. It is
important to keep these classes stable in the short term, because there is a
high impact for them to break the complete project. Extensive testing is also
highly recommended for these classes. In the long run, it is recommended to
re- factor the code in order to resolve the impact of the named base classes.

Manual investigation starting at the mentioned code entities lead to the
identification of three essential problems that occur frequently across the code
base:

• static scoping and missing object life cycle control

• violation of the Single Responsibility principle and

• usage of inheritance for code re-use.

The subsequent review of the Ask, DataValues and Diff extensions shows that
their code is generally in a better state, but still occasionally suffers from the
named issues.

In the following, you will find an elaboration on each of these issues. In
addition, misc smaller issues that occurred during the code review and are
worth mentioning in this report will be discussed.

3.1.3 Static Scoping & Object Life Cycle
The Wikibase code contains 160 static methods. Aside from alternative
constructors like newFromArray(), a large number of methods contain logic and
some deal as the main entrance point for the application code. The hook
methods - which are registered at the MediaWiki application in order to trigger
the execution of extension code as certain events occur - are among the latter

http://qafoo.com, contact@qafoo.com 6

Qafoo GmbH - Code Review

ones (e.g. Wikibase\RepoHooks). Manual investigation showed that there is quite
some logic realized inside those. This code makes, due to its nature, again use
of static dependencies in order to retrieve needed objects and to dispatch
tasks.

Static code is generally discouraged for multiple reasons: Statically scoped
variables, as well as the use of global variables, can easily lead to side effects
in the applications which cannot be easily detected. Furthermore, logic realized
in static methods cannot be replaced fine-grained in the application, which is
an essential feature of object oriented programming compared to other
paradigms. These are also the reasons why code that makes use of static
entities is also very hard to test in a sensible way because dependencies
cannot be replaced.

A similar issue arises from the other extension points provided by MediaWiki
and used by the examined extensions: API extensions and special pages are
registered through a string class name. In order to execute the corresponding
code, MediaWiki instantiates these classes in a unified way. This way, the
extensions do not have control over the life cycle17 of these objects, preventing
them to injection additional dependencies, which leaves the static access of
utilized code as the only alternative.

One occasion of a factory-like structure that prevents control over the object
life cycle for the developer came to attention in the Wikibase source code: The
ValueParsers\ValueParserFactory class in the DataValues extension utilizes class
names to register value parsers. It is highly recommended to refactor such
occurrences to make use of a proper abstract factory18 approach.

Missing facilities to inject custom dependencies into the executed code is
assumed to be a main reason for other problems discussed in this report.

3.1.4 Single Responsibility Principle
Violations

Large numbers of executable code and highly complex methods are often a
sign for the missing separation of concerns or violations of the Single
Responsibility Principle (SRP).

A prototypical example for this is the modifyEntity() method of the
Wikibase\Api\EditEntity class. The method consists of over 250 lines of code
and has the highest complexity throughout the project. In addition to that, it
also dispatches some work to other methods on the same or parent classes.
The method performs at least the following tasks:

• validation of input data

• dispatching of several actions depending on the input data

17 http://qafoo.com/blog/020_object_lifecycle_control.html
18 https://en.wikipedia.org/wiki/Abstract_factory_pattern

http://qafoo.com, contact@qafoo.com 7

https://en.wikipedia.org/wiki/Abstract_factory_pattern
http://qafoo.com/blog/020_object_lifecycle_control.html

Qafoo GmbH - Code Review

• realization of each of these possible actions

• tracking of execution status information

• collection and preparation of output data and

• error handling.

As a result of this complexity and the amount of performed tasks, it is hardly
possible for a human being to fully understand the method and almost
impossible to create extensive automated tests. Both factors together result in
an immense risk that any change in this code results in an error.

While this is the most complex piece of code in the project, there are several
other methods that suffer from similar issues on a different level. Another
illustrative example is the SpecialWikibaseQueryPage class, which provides the
basis for some MediaWiki extensions that display a special page to query
information from the Wikibase extension. The class defines two template
methods for actually performing a query (getResult()) and for formatting a
result row (formatRow()). This already indicates, that at least two responsibilities
are mixed in the class:

• business logic and

• output formatting.

Injection of dependencies would solve the SRP violation here, but is hardly
possible due to the code structure at the moment. These circumstances
interfere with a correct separation of concerns, since there is no easy way to
access other objects in order to dispatch execution to them.

3.1.5 Usage of inheritance for code re-use
Many of the inheritance structures in the project seem to be created with the
main purpose of re-using code. For example the abstract
Wikibase\Api\ApiWikibase class extends the MediaWiki base class for API
extensions for the purpose of providing helper methods for further derived
classes. One derived class is the Wikibase\Api\ModifyEntity class. This class
implements the main execution method for API extensions, but only to leave
another Template Method19 abstract for further derived classes. In addition, it
provides some more protected helper methods for these derived classes. One
of these child classes is the Wikibase\Api\EditEntity class, which was already
subject of discussion due to the high complexity of its modifyEntity() method,
which is the template method left for implementation by the parent class.

The fundamental issue that arises here is, that the logic implemented in
protected methods of the base classes cannot be replaced fine-grained for any
of the child classes. If one of these classes requires an adjustment, this cannot
be realized by injecting a different dependency into the using code, but only by

19 https://en.wikipedia.org/wiki/Template_method_pattern

http://qafoo.com, contact@qafoo.com 8

https://en.wikipedia.org/wiki/Template_method_pattern

Qafoo GmbH - Code Review

touching existing code, which bears the risk of impacting the sibling classes.

This also has a high impact on automated test strategies, since the logic that is
encapsulated in protected methods cannot be replaced to isolate the code
under test. Instead, all code executed from within a protected method must be
treated and tested as if it was in-lined. This implies another raise of complexity
for the modifyEntity() method.

Furthermore, if inheritance is used for the sole purpose of code re-use, the
polymorphic relation between sub-class and parent is not guaranteed. This can
easily result in the need to violate the Liskov Substitution Principle20, which
holds a high risk of leading to hard to debug errors.

Even if code re-use by inheritance was often taught best practice in the past, it
is discouraged nowadays due to exactly these reasons. Instead, aggregation
and delegation are the preferred ways for code re-use. They ensure proper
decomposition and allow the fine-grained replacement of delegated logic, while
only requiring slightly more code.

It is assumed that the methodology of using inheritance for code re-use is
mostly a result of the missing dependency injection facilities behind the
MediaWiki extension points. Under such circumstances, moving re-usable code
into a common base class appears to be one of very few possibilities.

3.1.6 Tests
A very rough analysis of the Wikibase tests revealed that the test base is quite
impressive and of better than average quality. It should be considered to use
PHPUnits' mock API21 or a dedicated mock library like Phake22 for newly created
tests, instead of the currently used hand-crafted mock objects.

There is also some complexity in the test cases which should be considered an
indicator for too high complexity in the corresponding production code, which
might require re-factoring.

3.1.7 Miscellaneous
The Wikibase project uses namespaces inconsistently since these were
originally discouraged by the upstream MediaWiki team. When namespaces
were introduced to Wikibase, only a single one (Wikibase) was used for the full
project. At a latter stage, the team started to split the code base into sub
packages using nested namespaces. There is no consequent mapping of
namespaces and class names to source code files, yet. It is recommended to
introduce consequent namespace scheme. The application of the PSR-023
standard to the code base is recommended to enhance the overview for

20 https://en.wikipedia.org/wiki/Liskov_substitution_principle
21 http://www.phpunit.de/manual/3.8/en/test-doubles.html
22 https://github.com/mlively/Phake
23 https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-0.md

http://qafoo.com, contact@qafoo.com 9

https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-0.md
https://github.com/mlively/Phake
http://www.phpunit.de/manual/3.8/en/test-doubles.html
https://en.wikipedia.org/wiki/Liskov_substitution_principle

Qafoo GmbH - Code Review

developers and simplify autoloading of classes.

There is no consequent use of abstract classes and interfaces throughout the
different extensions. It seems that mostly technical reasons were applied to the
usage of both. For example, the DataValues extension provides a large number
of interfaces for the purpose of defining how a certain set of classes looks like
(e.g. ValueFormatters\ValueFormatter). In addition, there often exists an abstract
base class to realize specific base functionality for the same set of classes that
the interface applies to (e.g. ValueFormatterBase). It is recommended to revise
this usage on basis of the semantical meaning of the constructs as e.g.
discussed in our blog article on that matter24.

Several occurrences of the ternary operator were found during the review.
While this operator should generally be avoided for code readability reasons, it
might be considered acceptable by the team to use it for the purpose of
assigning default values. However, the ternary operator should be avoided for
any other purpose. Especially its usage inside conditions, as shown in the
following example from Wikibase\Api\EditEntity, should be highly discouraged.

if (isset($data[$props]) && (is_object($page) ? $page->getId() !==
$data[$props] : true))

There still exist very few realizations of the Singleton25 pattern in the code,
most probably to allow access to an instance of the corresponding class from
the static code already discussed. One example is the Wikibase\ChangeHandler.
The usage of Singleton produces irreplaceable, static dependencies. It is
therefore recommended to get rid of such implementations. It is also
recommended to avoid the usage of the Singleton access provided by classes
of the MediaWiki framework in order to get rid of the static dependencies
implied by the usage. This can greatly enhance testability of the extension
code. A possible solution approach to realize this is mentioned in chapter 4.1.

In the DataValues extension, the usage of a result object occurs for the sake of
error handling (e.g. ValueParsers\GeoCoordinateParser). There is no obvious
reason to favor a result object over the use of exceptions in case of an error. It
is therefore recommended to switch to using exceptions there, which would
remove several conditions from the code resulting in an enhanced readability if
the assumption is correct.

The usage of the assert() function in production code is generally debatable.
The PHP manual actually discourages this.

3.2 JavaScript
Since the Wikibase team asked for advice if a switch to AngularJS26 is suitable,
this topic is picked up where feasible. In the following, the results of the
JavaScript review are summarized, after the chosen modality for the review has

24 http://qafoo.com/blog/026_abstract_classes_vs_interfaces.html
25 https://en.wikipedia.org/wiki/Singleton_pattern
26 http://angularjs.org/

http://qafoo.com, contact@qafoo.com 10

http://angularjs.org/
https://en.wikipedia.org/wiki/Singleton_pattern
http://qafoo.com/blog/026_abstract_classes_vs_interfaces.html

Qafoo GmbH - Code Review

been described.

3.2.1 Modus Procedendi
The JavaScript review was bootstrapped by the results of plato27. On that basis,
the JavaScript code was explored by spot-checks guided by the experience of
the code reviewer. In addition to that, the Wikibase team provided a list of
questions and created a sketch of an object-model diagram in order to support
the reviewer while the review was already in process. This material became
available after half the review was conducted. As a follow-up to the actual
review, the executive reviewer was available for questions.

3.2.2 Results
In general, the JavaScript code is in a good state. As with the PHP code,
occasional violations of the Single Responsibility Principle are one of the most
pressing issues. Too much logic is bundled in single modules.

For example, the wbclient.linkitem.js plugin and the jquery.ui.suggester.js
should be split up into multiple entities to enhance readability, maintainability
and code re-use. Along the same line, a more strict separation of logic and view
should be considered. Where currently there is a lot of inline DOM manipulation
performed within the widget logic, a simple template system like Handlebars28
is recommended for use. Alternatively, the introduction of AngularJS could be
considered, which integrates well with jQuery and could deal as template
system for the transition phase.

The management of all modules in a global extension namespace is
discouraged. Instead, a dependency injection mechanism should be
implemented. If a switch to AngularJS will take place, the DI mechanism of that
framework can and should be used.

Only very few coding style issues can be found throughout the code, which is
the result of individual team members making use of JSLint or JSHint. It is
recommended to commit a central configuration file for these tools to provide a
common basis for all developers and integrate such checks into the continuous
integration environment.

As reported by the team, performance issues occur due to the number of
re-draws triggered by individual widgets. As a potential solution, the delaying
of drawing has been discussed. Such an approach can be handled using events
and promises, while each widget can attach the required drawing actions and a
collective re-drawing can occur when the corresponding event reaches the top
level of the DOM. Separation of read and write operations can enhance the
performance in addition.

Unit testing is currently realized using QUnit. Because heavy workarounds have

27 https://github.com/jsoverson/plato
28 http://handlebarsjs.org

http://qafoo.com, contact@qafoo.com 11

http://handlebarsjs.org/
https://github.com/jsoverson/plato

Qafoo GmbH - Code Review

to be performed in order to integrate the QUnit results into continuous
integration the use of an alternative test runner like js-test-driver29 or
karma-runner30 (formerly Testacular) can improve the process. These testing
tools do not only provide easier integration with many continuous integration
solutions, but also superior features like code coverage information and more.

4 Solution Approaches
Due to the interactive nature of the processed PHP code review, solution
approaches for several of the identified issues, as well as for several questions
asked by the Wikibase team, were discussed and elaborated. The following
sections contain a summary of each extensively discussed topic.

Please note that the presented approaches are still in draft stage and do not
function as production ready solutions.

4.1 Dependency Injection
The need for a proper dependency injection mechanism was identified as the
most pressing issue during the code review. Discussions with the Wikibase
team confirmed and underlined this impression. A dependency injection
mechanism should help to decompose complex code into multiple classes to
delegate parts of the necessary logic to.

This section elaborates on the need for such a mechanism, summarizes the
requirements and the proposed solution approach.

4.1.1 Background
Essentially three different approaches for extending MediaWiki are used in the
Wikibase extension and its derived extension projects:

• Hooks

• API Modules

• Special Pages

In order to register code points for these extensions, MediaWiki expects either
a PHP callback with a certain parameter signature (Hooks) or a string class
name. Both approaches prevent the proper usage of dependency injection for
different reasons.

In case of class name registration, the extension developer has no control over
the object life cycle of the class provided as the extension code point.
MediaWiki creates an instance of the class in a unified way, with a unified set of
constructor arguments. There is no facility for the developer to provide

29 https://code.google.com/p/js-test-driver/
30 http://karma-runner.github.io/0.8/index.html

http://qafoo.com, contact@qafoo.com 12

http://karma-runner.github.io/0.8/index.html
https://code.google.com/p/js-test-driver/

Qafoo GmbH - Code Review

additional arguments for the construction process.

The situation is different for the callback mechanism. In this case, the creation
of a custom object could be performed by the extension developer and a
callback to a public method on that object could be registered. However, one
important constraint of MediaWiki extensions which are to be used in the
Wikipedia is a very low configuration footprint in terms of memory usage and
code execution time. For this reason, and most probably due to established
habits, static method calls are registered as callbacks.

Therefore, no dependency injection is performed for these extension points,
which serve almost exclusively as entry points for the extension code. It is
suspected that this is one of the main reasons behind the found Single
Responsibility Principle violations and static code structures, which lead to
in-flexible and hard to test code.

4.1.2 Requirements
The desired approach should provide a simple dependency injection
mechanism, which takes over the composition of actual objects to be used at
application runtime. In addition to that, a bridge is needed to make this
approach usable behind the static extension entry points provided by the
MediaWiki software. The amount of static code is to be kept as small as
possible.

Furthermore, the designed approach must ensure that the memory and code
execution footprint of the Wikibase extension is kept low, since the extension is
used on the Wikibase server. A lazy initialization approach is therefore
recommended.

Discussions with the team showed that a recent issue in the development of
Wikibase is the usage of several instances of the same class in parallel with
different configurations. The dependency injection mechanism should support
this requirement.

4.1.3 Dependency Management
The usage of an existing dependency injection solution is possible and viable.
Potential candidates could be the Symfony2 Service Container31, as an example
for a feature-rich solution, Pimple32, as an example for a more light-weight
approach, or any of the other open source PHP implementations. However, it is
questionable whether the Wikibase community would be satisfied with such a
solution and how it would be adopted. For this reason, a simple, home-made
approach was suggested as an alternative. The final decision is left to the
Wikibase team.

The proposed approach utilizes a simple DependencyManager class that manages

31 http://symfony.com/doc/current/book/service_container.html
32 http://pimple.sensiolabs.org/

http://qafoo.com, contact@qafoo.com 13

http://pimple.sensiolabs.org/
http://symfony.com/doc/current/book/service_container.html

Qafoo GmbH - Code Review

dependency resolution in combination with implementations of an abstract
DependencyBuilder base class. Each of the latter ones realizes the creation of a
part of the object graph similar to the Builder pattern33.

Illustration 1: DependencyManager illustrates a DependencyManager with some
example builder objects. Each builder is assigned to a specific key by the
manager, allowing the user to access the root object of the graph that is
created by the builder. If requested, the manager will instruct the
corresponding builder to create the object. The manager will then return the
created object so that its creation is transparent to the user.

For example, if the a DependencyManager as configured in Illustration 1:
DependencyManager is asked to retrieve the object with the key “mail”, it will
ask the registered DatabaseBuilder to create that object and return it.

The following example code outlines the DependencyManager class. The
registerBuilder() method is used during configuration to register builders for all
partial object graphs that can be created at run time. The method getObject()
triggers the described creation process and returns the created object for a
given key.

class DependencyManager
{
 public function registerBuilder($objectKey, DependencyBuilder $builder)
 {
 // ... store in lookup ...

33 https://en.wikipedia.org/wiki/Builder_pattern

http://qafoo.com, contact@qafoo.com 14

Illustration 1: DependencyManager

https://en.wikipedia.org/wiki/Builder_pattern

Qafoo GmbH - Code Review

 }
 public function getObject($objectKey)
 {
 // ... sanity checks ...
 return $this->builderMap[$objectKey]->buildObject($this);
 }
}

A DependencyBuilder base class could look as follows:

abstract class DependencyBuilder
{
 public abstract function buildObject(DependencyManager $dependencyManager);

}

Only the buildObject() method is required, which is triggered by the
DependencyManager. Note that the manager is given to that method in order to
allow it to depend on other partial object graphs. That way, a mailer object can
retrieve a logger as a dependency. Now the object graph can be created in a
fine-grained way and dependencies can easily be exchanged by the
registration of different builder objects during configuration.

The sketch for an example builder could look like this:

class MailBuilder extends DependencyBuilder
{
 public function __construct($hostname, $port)
 {
 // ...
 }
 public function buildObject(DependencyManager $dependencyManager)
 {
 return new Mail(
 new SmtpTransport($this->hostname, $this->port),
 $dependencyManager->get('templateEngine')
);
 }
}

This particular builder receives configuration parameters through its
constructor. The corresponding settings are used in the buildObject() method to
create an instance of the SmtpTransport object. Since no other objects rely on
this one, there is no need to outsource it into its own builder. If this should be
the case, a new builder could be implemented for the mailer. The case is
different for the template engine in this example: Since this one is needed by
other objects, it is contained in a dedicated builder, which is requested from
the DependencyManager to resolve the dependency.

4.1.4 Extension Encapsulation
In addition to the pure dependency injection concept, a solution is required to
break out of the static context of the extension points provided by MediaWiki.
To achieve this, a workaround is needed which allows to access the configured

http://qafoo.com, contact@qafoo.com 15

Qafoo GmbH - Code Review

instance of the DependencyManager in the static context.

On basis of experience from other projects, two mechanisms of self-control and
guidance for new developers have been introduced into the solution proposal.

First, the static access method, which is required to bridge the dynamic and
static context, should be encapsulated into a dedicated class called e.g.
ExtensionAccess. This way, it can be clearly documented what the purpose and
limits of this mechanism are. Furthermore, it eases the possibility of e.g. a
PHP_CodeSniffer34 rule to restrict the usage of this mechanism to a small
number of well specified cases – i.e. the extension points of MediaWiki.

class ExtensionAccess
{
 private static $registry;
 public static function setRegistry(ExtensionPointRegistry $registry)
 {
 self::$registry = $registry;
 }
 public static function getRegistry()
 {
 return self::$registry;
 }
}

Second, in order to restrict the set of objects directly available to a specific
extension point, a class named ExtensionPointRegistry is introduced. This
registry class exposes a method for each accessible object and hides the
DependencyManager to enforce a clean usage of the dependency injection
mechanism.

class ExtensionPointRegistry
{
 private $dependencyManager;
 public function __construct(DependencyManager $dependencyManager)
 {
 // ...
 }
 public function getHookDispatcher()
 {
 return $this->dependencyManager->get('hookDispatcher');
 }
 // ... more entry points from MW extensions ...
}

This introduces a second level of indirection in the process of retrieving an
object to dispatch the actual logic to, it is highly recommended to keep this
mechanism. Its purpose is to avoid one of the most common mistakes when
using a dependency injection mechanism: Retrieving the dependency container
and pulling required objects from it. The only object allowed to do so should be
the ExtensionPointRegistry.

34 http://pear.php.net/package/PHP_CodeSniffer

http://qafoo.com, contact@qafoo.com 16

http://pear.php.net/package/PHP_CodeSniffer

Qafoo GmbH - Code Review

4.1.5 Usage
The described dependency injection mechanism occurs in two different places:
1st an instance of the DependencyManager needs to be configured. This
configuration includes the creation of the required builder objects and potential
injection of configuration variables:

$dependencyManager = new DependencyManager();

// Retrieves configuration from config object
$dependencyrMmanager->registerBuilder('database', new DatabaseBuilder());

// Give configuration through constructor
$dependencyManager->registerBuilder(
 'mail',
 new MailBuilder('smtp.example.com', 25)
);

The example code shows two variants of how configuration could take place:
The registered DatabaseBuilder is expected to access a configuration object
obtained from the DependencyManager. This centralizes the place for configuration
to a central management object which could for example parse a configuration
file. Such a solution would imply a dedicated builder for each object instance
that requires a dedicated configuration.

The second builder registration, for the MailBuilder, illustrates how
configuration settings are delivered directly to the builder during its
construction. This implies mixing the concerns of configuration and object
registration, which is typically not desired, but might be feasible here for
performance reasons. This variant can also be used with the current way of
accessing configuration from a global variable. This is not recommended for the
previously shown approach.

The 2nd point of usage occurs at program run time in the extension points this
mechanism is created for. However, the DependencyManager will never be used
directly there, but (as discussed) only through the ExtensionPointRegistry, which
is obtained via the ExtensionAccess mechanism:

class RepoHooks
{
 public static function onBeforePageDisplay(\OutputPage &$out, \Skin &$skin
) {
 // Obtain hook dispatcher
 $hookDispatcher = ExtensionAccess::getRegistry()->getHookDispatcher();
 // Dispatch hook to a dedicated object
 return $hookDispatcher->dispatchHook(
 'onBeforePageDisplay',
 $out,
 $skin
);
 }
 // ...
}

http://qafoo.com, contact@qafoo.com 17

Qafoo GmbH - Code Review

4.1.6 Conclusion
The sketched approach fulfills all presented requirements: The dependency
injection mechanism is kept simple and easy to understand. The builder
infrastructure supports lazy initialization with varying degrees and requires only
a minimal processing overhead during configuration. Through the static bridge,
it is possible to use the dependency injection mechanism from within the
MediaWiki extension points without instantiation of the actual object graph
during configuration. Two security mechanisms have been put in place as
examples how to prevent abuse of the dependency injection mechanism for
pulling arbitrary dependencies.

The following graphic visualizes roughly the code flow when an extension point
is triggered by MediaWiki:

4.1.7 Remarks
The presented solution approach is not a completely elaborate solution but

http://qafoo.com, contact@qafoo.com 18

Illustration 2: Dependency injection flow

Qafoo GmbH - Code Review

should only deal as an inspiration for the further work of the Wikibase team.
Especially the class naming must carefully be rethought for intuition.
Furthermore, the following remarks should be considered for a final solution:

There is currently no way in the example to share objects between instantiation
requests, i.e. each object is created from scratch through DependencyManager and
the corresponding builder whenever it is requested. A generic decorator for
builders could be used to achieve sharing or the sharing mechanism can be
implemented into the manager.

If the degree of lazy initialization supported by this mechanism does not fulfill
the performance requirements in terms of memory footprint, a solution might
be to allow factories to access the dependency injection mechanism. However,
this requires additional strict rules for usage of the DependencyManager in order to
prevent its injection into logic objects and arbitrary pulling of dependencies.

Another possible performance optimization might be to not configure the
dependency mechanism on each boot of MediaWiki, but to delay the
configuration by outsourcing it into a dedicated file. This file could be imported
(include/require) by a global function when the Wikibase extension is actually
activated.

It is highly discouraged to realize these two performance optimizations without
evidence of an actual performance issue!

4.2 Controllers
The previously described dependency injection mechanism and its bridge into a
static context allow the Wikibase extension code to work with dependency
injection behind the static MediaWiki extension points. It is however not
recommended to implement logic directly inside the extension code points by
pulling several objects from the DependencyManager.

Instead, there should be a dedicated controller class or a method on such for
each extension point. These controllers encapsulate the glue logic which
dispatches the typical web application tasks:

• parsing and validation of input parameters

• triggering of business logic and

• output rendering.

4.3 Parsers & Serializers
By request of the Wikibase team, the parsing and serializing infrastructure of
the DataValues component was analyzed.

The serializing infrastructure of the DataValues component uses a valid
approach, while there is potential for optimization in respect to testability and

http://qafoo.com, contact@qafoo.com 19

Qafoo GmbH - Code Review

extensibility. The currently implemented parsing infrastructure does not take
care of nested value structures, which is foreseen to become a problem in a
near future.

While the solutions sketched in this chapter are specifically designed for the
DataValues extension, the shown principles can and should be applied to other
occurrences of parsing and data serialization.

4.3.1 Analysis
The DataValues component provides functionality to serialize a given value
object graph into a plain structure that can be stored ore transferred easily.
This structure may consist of scalar values and arrays, but must not contain
objects or other complex data types. Furthermore, the component provides
parsers for the reverse direction of creating a value object structure from a
given plain representation.

The serialization process is bound directly to the value objects by the
DataValues\DataValue interface, which requires a method toArray() to be
implemented by each value object. This method returns an array that contains
a key “type”, which is assigned to a type identifier for the value, and a key
“value”, which holds the plain representation of the value. In order to transform
a nested value, e.g. DataValues\MultilingualTextValue, to its plain structure, the
toArray() code of the containing object must call the toArray() method of the
nested object.

While this approach works well for now, it might result in code duplication when
further serialization formats are required to be implemented. For these,
additional methods need to be implemented on all value objects, which
basically contain the same logic. Furthermore, for testing the current approach
with nested values, there is the need to either mock nested value objects or to
create complex data fixtures. Both approaches are sub-optimal.

The parsing of value objects from a plain structure is modeled through
dedicated parser classes. The ValueParsers\ValueParserFactory is the central
point for registration of parsers. While the implementation of this class inhibits
issues with object life cycle control (as mentioned in chapter 3.1.3), it provides
a mechanism for third parties to register custom parsers.

Each registered parser must implement the ValueParsers\ValueParser interface
and is responsible for parsing exactly one type of value. Parsing of nested
values is not supported by the infrastructure directly because it was not
needed, yet. Due to the missing dependency injection facility for parsers, it is
not even possible to delegate parsing of nested values to a dedicated parser
object by now. Therefore, parsers would need to take care of parsing nested
values themselves, which would lead to hardly testable code and potentially to
code duplication.

http://qafoo.com, contact@qafoo.com 20

Qafoo GmbH - Code Review

4.3.2 Parser
In order to support the parsing of nested values properly, the following
approach for a central parser dispatching point is suggested. The sketched
solution resolves the issue of missing object life cycle control for parser
developers, too.

As the central point for maintaining parser instances, the original ParserFactory
is to be replaced by a ParserDispatcher, which has the purpose of dispatching
parsing of a certain value type to the corresponding parser. In order to avoid all
parser instances to be created at configuration time, the ParserDispatcher does
not aggregate parsers directly, but accepts slim factory objects, which are
modeled after the abstract factory35 pattern. This way, lazy initialization is
supported for parsers.

class ParserDispatcher
{
 public function __construct(array $parserFactories)
 {
 // ... validate & store ...
 }
 public function parseValue($inputValue)
 {
 foreach ($this->parserFactories as $factory) {
 if ($factory->canParse($inputValue)) {
 $parser = $factory->createParser();
 return $parser->parse($inputValue, $this);
 }
 }
 throw new \RuntimeException('No parser found for input value.');
 }
}

In order to parse a value, the parseValue() method is utilized. It iterates the
available parser factories until one is found that can parse the given
$inputValue. The determination of which parser factory is to be taken is
delegated to the factories themselves, which allows more powerful matching
algorithms to be implemented. In addition, it eases testing of the matching
algorithm.

Once triggered, the parser receives the dispatcher again, in order to dispatch
nested value parsing to it. The following code example shows such a parser:

class NestedValueParser extends Parser
{
 public function parse($value, ParserDispatcher $dispatcher)
 {
 // ... parse $value into $result

 $result->someNestedValue =
$dispatcher->parseValue($value['someNestedValue']);
 $result->otherNestedValue =

35 https://en.wikipedia.org/wiki/Abstract_factory_pattern

http://qafoo.com, contact@qafoo.com 21

https://en.wikipedia.org/wiki/Abstract_factory_pattern

Qafoo GmbH - Code Review

$dispatcher->parseValue($value['otherNestedValue']);

 return $result;
 }
}

As a result, the parsing of a single value is completely encapsulated in a single
parser, which does not need to know about the structure or nature of nested
values. In addition to that, 3rd party developers can overwrite the parsing of
specific values easily, for example in order to have instances of derived value
classes created instead of the default ones. Also, the testing of parsers is
eased.

4.3.3 Serializer
While the current serialization approach works, it is recommended to decouple
the serialization logic from the value objects in order to separate
responsibilities clearly. However, this change is not crucial. The structure for
such a serialization infrastructure works very similar to the Parser infrastructure
presented in the previous section. Therefore, a detailed elaboration is skipped
here.

5 Action Items
Together with the Wikibase development team, three action items have been
identified for near-time realization:

1. Implement the dependency injection mechanism following the sketched
solution described in chapter 4.1.

2. Refactor the EditEntity API module on that basis, slowly decomposing its
functionality and verifying the re-usability of components.

3. Refactor the hook implemented by Wikibase using the dependency
injection mechanism.

After that, the team can consider further steps or migrate to a soft refactoring
of the missing code entities during everyday work. Furthermore, it should be
ensured that code entities with a high CodeRank are well-tested and kept
stable. For this proceeding, the enhanced CodeRank mode of Pdepend should
be used. At this point, a reconsideration by Qafoo is recommended to verify
that the taken steps resulted in the desired effects.

6 Appendix
The following appendix contains the raw notes of the code review as requested
by the customer. Please note that solution approaches are not elaborated

http://qafoo.com, contact@qafoo.com 22

Qafoo GmbH - Code Review

explicitly again in this section, because there is already an extensive
documentation found in chapter 4. In addition, there was quite some oral and
chat communication taking place during the review, which is – due to its nature
– not documented here.

6.1 PHP
The following notes relate to PHP code only. They are structured by analyzed
extension and class / method.

6.1.1 Wikibase
The Wikibase extension was the main focus of the review. Therefore, the
biggest amount of time was spent reviewing its code. Software metrics were
used to bootstrap the manual review. In following, the review notes of this
initial analysis are presented. Please note that these notes do not include
detailed elaborations on the solution approaches worked out together with the
Wikibase team, since these are already presented in depth in chapter 4.

Wikibase\RepoHooks

Wikibase/repo/Wikibase.hooks.php

This class contains the hooks for extending MediaWiki. The callbacks are
realized using static methods.

public static function onPageTabs(\SkinTemplate &$sktemplate, array &$links)
{
 wfProfileIn(__METHOD__);

 $title = $sktemplate->getTitle();
 $request = $sktemplate->getRequest();

 if
(EntityContentFactory::singleton()->isEntityContentModel($title->getContentMo
del())) {

 unset($links['views']['edit']);

 if ($title->quickUserCan('edit', $sktemplate->getUser())) {
 $old = !$sktemplate->isRevisionCurrent()
 && !$request->getCheck('diff');
 $restore = $request->getCheck('restore');

 if ($old || $restore) {
 // insert restore tab into views array, at the second position

 $revid = $restore ? $request->getText('restore') :
$sktemplate->getRevisionId();

http://qafoo.com, contact@qafoo.com 23

https://gerrit.wikimedia.org/r/gitweb?p=mediawiki/extensions/Wikibase.git;a=blob;f=repo/Wikibase.hooks.php;h=49cad8586e777947d72a8f3fae481d9188f6836f;hb=86556a7eedd115c3781e05c3ce013b6ea14d2b6c

Qafoo GmbH - Code Review

 $head = array_slice($links['views'], 0, 1);
 $tail = array_slice($links['views'], 1);
 $neck['restore'] = array(
 // … code including method calls …
);

 $links['views'] = array_merge($head, $neck, $tail);
 }
 }
 }

 wfProfileOut(__METHOD__);
 return true;

}

As can be seen in this exemplary method from the class, there is quite some
logic included in the static method context. Because there is no easy way to
break out of the static context, the code needs to use more static accesses and
complexity is concentrated in the method.

The hook mechanism should receive an abstraction layer to decouple the logic
from the static context of MediaWiki extension points. See chapter 3.1.3 for
details.

Wikibase\DispatchChanges

Wikibase/lib/maintenance/dispatchChanges.php

The DispatchChanges class implements a maintenance script which populates
changes in Wikibase to different Wikipedia instances. Again, there is quite
some complex logic involved in the MediaWiki extension point method
execute(), for example control structures are nested until level 4, while there
occur multiple of these control structures in a sequence. The result is a degree
of complexity that can not easily be grasped, which results in decreased
maintainability. Furthermore, the method dispatches additional logic to
protected methods on the same class, with the result of really hard to test
code. It is recommended to refactor this class.

Wikibase\ChangeHandler

Wikibase/client/includes/ChangeHandler.php

Beside a larger amount of code which should be refactored into multiple
classes in order to reduce complexity, this class implements a Singleton36
pattern, which is discouraged due to its nature of populating static
dependencies. It is supposed that this Singleton is required in order to make an
instance of the class available to MediaWiki extension point implementations,
which also reside in a static context.
It is recommended to get rid of such constructs. Further details on this issue
can be found in chapters 3.1.3 and 4.1.

36 https://en.wikipedia.org/wiki/Singleton_pattern

http://qafoo.com, contact@qafoo.com 24

https://en.wikipedia.org/wiki/Singleton_pattern
https://gerrit.wikimedia.org/r/gitweb?p=mediawiki/extensions/Wikibase.git;a=blob;f=client/includes/ChangeHandler.php;h=ff5a6d0ee2379a3bd45431c1bcafbd8921148c15;hb=86556a7eedd115c3781e05c3ce013b6ea14d2b6c
https://gerrit.wikimedia.org/r/gitweb?p=mediawiki/extensions/Wikibase.git;a=blob;f=lib/maintenance/dispatchChanges.php;h=599cd86938d3b8003b24403373c05a95dc72beb8;hb=86556a7eedd115c3781e05c3ce013b6ea14d2b6c

Qafoo GmbH - Code Review

It has also been noticed that there is quite some logic realized in the
constructor of the class, mainly in order to obtain default instances of
otherwise injected dependencies, when the Singleton is used.
There is one case, where an object property is set to null: if no dependency was
injected.
if ($this->mirrorUpdater !== null && ($change instanceof EntityChange)) {

 // keep local mirror up to date

 $this->mirrorUpdater->handleChange($change);

}

This results in additional necessary checks for this special case around the
class, such as

if ($this->mirrorUpdater !== null && ($change instanceof EntityChange)) {

 // keep local mirror up to date

 $this->mirrorUpdater->handleChange($change);

}

For such situations, the usage of a Null Object37 is recommended to avoid
additional complexity for handling special cases.

Wikibase\Api\EditEntity::modifyEntity()

Wikibase/repo/includes/api/EditEntity.php

This method shows the highest NPath complexity in the project, which is
17,336,096. While there exist code entities with way higher complexities in
other projects, the shown one already indicates unmaintainable code. It is
highly recommended to refactor the method.

The Wikibase\EditEntity class implements the MediaWiki API facilities for
updating a Wikibase entity. For this purpose it derives from
Wikibase\Api\ModifyEntity, which provides re-usable code to it through protected
methods and a Template Method38 pattern. The re-use of code through
inheritance is generally discouraged in favor or delegation to other objects. For
an elaboration in this, please refer to chapter 3.1.5. Refactoring is
recommended.

The modifyEntity() method itself mixes multiple different responsibilities, like
for example:

• Input parameter parsing

• Data validation and sanitation

• Logic dispatching for various input entity types

• Collection of status information

It is highly recommended to refactor the code of this method into multiple

37 https://en.wikipedia.org/wiki/Null_Object_pattern
38 https://en.wikipedia.org/wiki/Template_method_pattern

http://qafoo.com, contact@qafoo.com 25

https://en.wikipedia.org/wiki/Template_method_pattern
https://gerrit.wikimedia.org/r/gitweb?p=mediawiki/extensions/Wikibase.git;a=blob;f=repo/includes/api/EditEntity.php;h=f4b6ca25cf412798dcb294b7801fcaddd42c8147;hb=86556a7eedd115c3781e05c3ce013b6ea14d2b6c
https://en.wikipedia.org/wiki/Null_Object_pattern

Qafoo GmbH - Code Review

classes in order to decrease complexity and that way improve extensibility and
maintainability.

The overall structure of the class consists of a foreach loop, which contains a
huge switch-case structure to realize logic for different input entity types.

foreach ($data as $props => $list) {
 switch ($props) {
 case 'labels':
 // … ~20 lines of update logic …
 break;
 case 'descriptions':
 // … ~20 lines of update logic …
 break;
 case 'aliases':
 // … >50 lines of update logic …
 break;
 // … more cases …
 }
}

At a first glance, it appears to be a good approach to extract each piece of
entity type dependent logic into its dedicated “action” class.

Beside complexity which is generated through disobeying the Single
Responsibility Principle, there are smaller coding issues in the method:

The method receives an object parameter by reference:

protected function modifyEntity(EntityContent &$entityContent, /*...*/)

Since PHP 5 it is generally not necessary to pass objects by reference in order
to work on a reference instead of a copy of the object. Passing an object by
reference only allows to overwrite the variable contents completely, which is
highly discouraged since it can easily lead to errors that are extremely hard to
debug. The removal of all occurrences of such constructs is therefore highly
recommended.

While use of the ternary operator is generally discouraged since it decreases
code readability, its usage inside of conditions should definitely be avoided.
Constructs like

if (isset($data[$props]) && (is_object($page) ? $page->getId() !==
$data[$props] : true)) {

decrease maintainability of control structures significantly. Additionally, many
uses of the ternary operator could be replaced by a simple method to choose a
default value, resulting in calls like

$this->getValueWithDefault($value, $defaultValue)

Several smaller code duplications could be found in the EditEntity class, for
example the following code piece occurs several times, only with slightly
different parameters:

$this->dieUsage($this->msg('wikibase-api-illegal-field',
'lastrevid')->text(), 'illegal-field');

http://qafoo.com, contact@qafoo.com 26

Qafoo GmbH - Code Review

This could be easily moved into a dedicated method with a speaking name to
avoid code duplication and increase readability through calls like:

$this->dieUsageIllegalField('lastrevid');

Wikibase\EntityView::getHtmlForLanguageTerms()

Wikibase/repo/includes/EntityView.php

With an NPath complexity value of 625,004, this method ranks second place in
the Wikibase project. The Wikibase\EntityView class provides basic code for
creating entity views. So, again, there is a case of code re-use through
inheritance, which is discouraged in favor of delegation. Chapter 3.1.5 contains
a detailed elaboration on this issue.

The affected method getHtmlForLanguageTerms() renders HTML output for a
Wikibase entity's terms. The method iterates terms by language and renders a
list of terms in form of a table, which is responsibility of the view. While a
simple template engine seems to be used through the wfTemplate() function,
the main view logic is kept on the PHP side.

The complexity of the method mainly originates from the determination of
default values, which could easily be replaced by a speaking method call like

$this->getValueWithDefault($value, $defaultValue)

which would reduce the complexity of the method and increase readability.
Furthermore, the rendering logic for the table could be extracted into dedicated
classes or a more powerful template engine could be used. Even moving the
code into a dedicated PHP file could help to divide the view logic more explicitly
from the business logic.

The same recommendation basically applies to most other methods in the
Wikibase\EntityView class.

Wikibase\MultiLangConstraintDetector::addConstraintChecks

Wikibase/repo/includes/MultiLangConstraintDetector.php

This method allows to extend the Wikibase functionality through the standard
MediaWiki hook mechanism. While it is understandable, that standard hook
mechanisms must be exposed by the Wikibase extension, it is recommended to
abstract the hook mechanism into its own class in order to avoid code
duplication and create a clear border to extension points.

This step could also increase readability of the code significantly, if each hook
point provided by the Wikibase extension is put into a dedicated method with a
speaking name. By now, there is hardly any documentation on the extension
facilities provided by Wikibase and the code is inexplicit on what data is
submitted to the hooks and what manipulations are expected. Optimally, a
specific set of objects is submitted, on which hooks can work.

With an NPath complexity of 314,000, the method ranks place three in

http://qafoo.com, contact@qafoo.com 27

https://gerrit.wikimedia.org/r/gitweb?p=mediawiki/extensions/Wikibase.git;a=blob;f=repo/includes/MultiLangConstraintDetector.php;h=d33861502c821525002fa7ee4c69692c0db2f9f7;hb=86556a7eedd115c3781e05c3ce013b6ea14d2b6c
https://gerrit.wikimedia.org/r/gitweb?p=mediawiki/extensions/Wikibase.git;a=blob;f=repo/includes/EntityView.php;h=61e597dcc8a5001e94134d8c113311be3a9a1889;hb=86556a7eedd115c3781e05c3ce013b6ea14d2b6c

Qafoo GmbH - Code Review

Wikibase. It was not possible to fully understand the code of the method within
a reasonable time, which is another strong indicator that the method needs
refactoring. From what has been understood, the introduction of a Constraint
base class to encapsulate checks and provide extension facilities to 3rd parties
appears reasonable.

Discussion with the team showed that the affected class is considered for a
complete re-building, which can be supported.

Wikibase\Api\ApiWikibase

Wikibase/repo/includes/api/ApiWikibase.php

Following the CodeRank metric, this class is the most essential one in the
Wikibase project. This appears logical and was confirmed by the team, because
it provides the base for all API modules provided by the Wikibase extension. It
is highly recommended to have extensive tests for this class and to minimize
changes to it. Errors occurring in this class have a very high impact on the
complete project and therefore the full application.

The purpose of the Wikibase\Api\ApiWikibase class is to provide re-usable pieces
of code to the deriving MediaWiki API modules. So, this is another occurrence of
code re-use by inheritance, which is discouraged. Please refer to chapter 3.1.5
for details on this issue.

It is highly recommended to resolve the high impact of this class by changing
the way API modules are handled.

There is code in this class to store information about operation results and to
display Wikibase entities. As it seems, the latter functionality was already
partly extracted into a Wikibase\EntitySerializer class. A refactoring in this
direction is recommended, but the currently taken approach for this can be
optimized. Further elaboration on this can be found in chapter 4.3.

For refactoring such code, the following procedure is recommended:

• Create (integration) tests for the module the functionality resides in
• Create new API
• Implement tests for new API
• Move the code into the new API (guided by tests)
• Replace the source in its old place with calls to the new API

Wikibase\SpecialWikibasePage

Wikibase/lib/includes/specials/SpecialWikibasePage.php

Ranking second place regarding the CodeRank metric in the Wikibase project,
this class again provides the basis for implementations of MediaWiki extension
points: The so-called “Special Pages”. Again, this class provides code for re-use
for derived classes, which is discussed extensively in chapter 3.1.5. The issues
applying here are almost identical to the ones discussed for the previous
section.

http://qafoo.com, contact@qafoo.com 28

https://gerrit.wikimedia.org/r/gitweb?p=mediawiki/extensions/Wikibase.git;a=blob;f=lib/includes/specials/SpecialWikibasePage.php;h=e254315a0231a8195d8c5fa1913025b8e8325b96;hb=86556a7eedd115c3781e05c3ce013b6ea14d2b6c
https://gerrit.wikimedia.org/r/gitweb?p=mediawiki/extensions/Wikibase.git;a=blob;f=repo/includes/api/ApiWikibase.php;h=85f98aa7e9b8fb6c326c325fec0790b26d4c307c;hb=86556a7eedd115c3781e05c3ce013b6ea14d2b6c

Qafoo GmbH - Code Review

Investigation of this class lead to one of its derivatives, the
Wikibase\SpecialWikibaseQueryPage class, which provides specialized functionality
for query pages. The class shows a prototypical violation of the Single
Responsibility Principle by taking care of parsing input parameters as well as
performing the actual query and rendering the results.
It is recommended to refactor these concerns into dedicated classes and make
use of delegation instead of providing the functionality by inheritance.

ViewEntityAction

Wikibase/repo/includes/actions/ViewEntityAction.php

Ranking third place in the CodeRank metric for Wikibase, the issues in this
class are basically the same as described for Wikibase\Api\ApiWikibase and
Wikibase\SpecialWikibasePage. The recommendations provided there basically
apply here, too, regarding code re-use by inheritance (chapter 3.1.5) and
missing dependency injection facilities (chapter 4.1).

6.1.2 DataValues
The DataValues extension is the largest extension of the extensions derived
from Wikibase. Since the review focus was clearly on the Wikibase extension
and there exist two more derived extensions, the DataValues extension was
only reviewed very shortly.

ValueParsers\GeoCoordinateParser

DataValues/ValueParsers/includes/parsers/GeoCoordinateParser.php

173 lines of executable code appear to be a bit too much, which already gives
a hint to the slight violation of the Single Responsibility Principle in this class.
However, the metric indicates a far better state than the Wikibase extension
itself.

The class represents a parser for different representations of geographical
coordinates. It realizes the different parsing algorithms each in a dedicated
protected method, which are dispatched from a central protected method:

protected function getParsedCoordinate($notationType, $coordinate) {
 $coordinate = $this->resolveDirection($coordinate);

 switch ($notationType) {
 case self::TYPE_FLOAT:
 return (float)$coordinate;
 case self::TYPE_DD:
 return $this->parseDDCoordinate($coordinate);
 case self::TYPE_DM:
 return $this->parseDMCoordinate($coordinate);
 case self::TYPE_DMS:
 return $this->parseDMSCoordinate($coordinate);
 default:
 // @codeCoverageIgnoreStart

http://qafoo.com, contact@qafoo.com 29

https://gerrit.wikimedia.org/r/gitweb?p=mediawiki/extensions/DataValues.git;a=blob;f=ValueParsers/includes/parsers/GeoCoordinateParser.php;h=9d387e36b1464d49df5454a5fdc18e59f0e6ba57;hb=5a9f4e26ca8cecbff138831c7fe2dde98d764abb
https://gerrit.wikimedia.org/r/gitweb?p=mediawiki/extensions/Wikibase.git;a=blob;f=repo/includes/actions/ViewEntityAction.php;h=b8074cac5bbb831e259ec0fbd53fd69adbb1b2c6;hb=86556a7eedd115c3781e05c3ce013b6ea14d2b6c

Qafoo GmbH - Code Review

 throw new InvalidArgumentException('Invalid coordinate type
specified');
 // @codeCoverageIgnoreEnd
 }
}

This code complicates extension of the parser infrastructure by new
representations for geographical coordinates. Furthermore, it increases the
difficulty to unit test this class. It is therefore recommended to refactor each of
the parsing algorithms into a dedicated class and delegate parsing to these.
This approach also splits up responsibilities nicely. A similar approach as
described in chapter 4.3 can be used.

It is unclear, why a result object is used instead of throwing an exception, in
case the provided coordinate representation cannot be parsed. Using
exceptions could simplify the code in this class and in the using code, which
raises the readability.

ValueParsers\ApiParseValue

DataValues/ValueParsers/includes/api/ApiParseValue.php

With 91 executable lines of code, this class is ranked second in the DataValues
module. This can already be considered a good code size. The inspected class
provides a MediaWiki API module for the value parsers shipped with the
extension.
The class already utilizes an approach slightly similar to a dependency injection
mechanism, which is good. However, if the solution elaborated in chapter 4.1 is
implemented, it could be used here, too.

ValueValidators\DimensionValidator

DataValues/ValueValidators/includes/validators/DimensionValidator.php

With 86 executable lines of code, this class appears quite balanced.

The class derives from ValueValidators\ValueValidatorObject for the purpose of
code re-use, which is discouraged (see chapter 3.1.5). As a result, the storing of
error messages in $this appears confusing when analyzing the code. Instead of
collecting error messages using functionality of the base class and leaving the
determination of a result object to it, this functionality could better be put into
a dedicated class.

The option handling could potentially be extracted into its own class, being
responsibly only for validation and sanitation of options for the
ValueValidators\DimensionValidator. This would result in slightly better
testability.

The doValidation() method could be split up into small private methods with
speaking names to enhance code readability.

http://qafoo.com, contact@qafoo.com 30

https://gerrit.wikimedia.org/r/gitweb?p=mediawiki/extensions/DataValues.git;a=blob;f=ValueValidators/includes/validators/DimensionValidator.php;h=ac4fa993a0f63ebf389321e8ae6cee929847a74e;hb=5a9f4e26ca8cecbff138831c7fe2dde98d764abb
https://gerrit.wikimedia.org/r/gitweb?p=mediawiki/extensions/DataValues.git;a=blob;f=ValueParsers/includes/api/ApiParseValue.php;h=5d38b9f49941e901426ee578af389184cb7f24fe;hb=5a9f4e26ca8cecbff138831c7fe2dde98d764abb

Qafoo GmbH - Code Review

DataTypes\DataTypeFactory::newType()

DataValues/DataTypes/includes/DataTypeFactory.php

With an NPath complexity value of 1,620, this is the most complex method of
the extension. While manual investigation showed that the method is really
somewhat complex, it is harmless compared to the findings in the Wikibase
extension.

Analysis revealed that this class actually performs some kind of dependency
injection approach. It should be replaced by a dedicated approach for that
purpose, for example as suggested in chapter 4.1.

DataValues\TimeValue::__construct()

DataValues/DataValues/includes/values/TimeValue.php

With an NPath complexity of 1,296, this class ranked second in DataValues.
Manual inspection indicated that the code is actually not complex to read for a
human being, since it only originates from parameter validation with early
return by an exception on error:

public function __construct($time, $timezone, $before, $after, $precision,
$calendarModel) {
 if (!is_string($time)) {
 throw new InvalidArgumentException('$time needs to be a string');
 }

 if (!is_integer($timezone)) {
 throw new InvalidArgumentException('$timezone needs to be an
integer');
 }

 if ($timezone < -12 * 3600 || $timezone > 14 * 3600) {
 throw new OutOfBoundsException('$timezone out of allowed bounds');
 }

 // … more validation …

 // Can haz scalar type hints plox? ^^

 $this->time = $time;
 $this->timezone = $timezone;
 $this->before = $before;
 $this->after = $after;
 $this->precision = $precision;
 $this->calendarModel = $calendarModel;

}

As can be seen, this code is perfectly valid and easy to understand.

DataValues\GeoCoordinateValue::__construct()

DataValues/ValueParsers/includes/parsers/GeoCoordinateParser.php

http://qafoo.com, contact@qafoo.com 31

https://gerrit.wikimedia.org/r/gitweb?p=mediawiki/extensions/DataValues.git;a=blob;f=ValueParsers/includes/parsers/GeoCoordinateParser.php;h=9d387e36b1464d49df5454a5fdc18e59f0e6ba57;hb=5a9f4e26ca8cecbff138831c7fe2dde98d764abb
https://gerrit.wikimedia.org/r/gitweb?p=mediawiki/extensions/DataValues.git;a=blob;f=DataValues/includes/values/TimeValue.php;h=5adbb086ffb6f7c15070e754364fb145b6d201ac;hb=5a9f4e26ca8cecbff138831c7fe2dde98d764abb
https://gerrit.wikimedia.org/r/gitweb?p=mediawiki/extensions/DataValues.git;a=blob;f=DataTypes/includes/DataTypeFactory.php;h=9be642fc789d26b02f3c6c804a42dcaf858ba9c1;hb=5a9f4e26ca8cecbff138831c7fe2dde98d764abb

Qafoo GmbH - Code Review

The complexity of 288 shown in this method is perfectly valid for validation
code that returns early with an exception. See previous section for details.

DataValues\DataValueObject

DataValues/DataValues/includes/DataValueObject.php

This file provides default implementations of required interface methods for
data value objects. The code has very low complexity and seems to be valid.
Extensive tests and only necessary changes are recommended, since this class
was identified to be most essential to the component, using the CodeRank
metric.

ValueParsers\StringValueParser

DataValues/ValueParsers/includes/parsers/StringValueParser.php

Similar observations as in the previous section apply to this class. However,
this class uses the Template Method39 pattern, which indicates code re-use by
inheritance. Still, since the degree is really low, it is not an issue in this specific
case.

ValueValidators\ValueValidatorObject

DataValues/ValueValidators/includes/ValueValidatorObject.php

While similar observations as for the previous two sections apply, this class
makes more extensive use of code re-use by inheritance. For example, the
valueIsAllowed() method provides an implementation of white/black listing that
can be triggered by derived classes, if wanted. A better solution would be to
provide this functionality by a dedicated validator that can be aggregated by
others, if such functionality is required.

General

The use of interfaces and abstract classes is a purely technical one. While this
is alright and widely used, the reading of the following blog post about
semantics of these two concepts is recommended:
http://qafoo.com/blog/026_abstract_classes_vs_interfaces.html

The ValueParsers\ValueParserFactory class creates objects from registered
classes, which prevents object life cycle control by implementers of parsers. An
abstract factory should rather be used. Refer to chapter 3.1.3 for further details
on this issue.

6.1.3 Diff
As for the DataValues extension, the Diff extension was only analyzed roughly.
Due to the extension size, the rule of investigating the top three classes for

39 http://en.wikipedia.org/wiki/Template_method_pattern

http://qafoo.com, contact@qafoo.com 32

http://qafoo.com/blog/026_abstract_classes_vs_interfaces.html
https://gerrit.wikimedia.org/r/gitweb?p=mediawiki/extensions/DataValues.git;a=blob;f=ValueValidators/includes/ValueValidatorObject.php;h=f784f590e33bee050ed793f549cc390b8d6475eb;hb=5a9f4e26ca8cecbff138831c7fe2dde98d764abb
http://en.wikipedia.org/wiki/Template_method_pattern
https://gerrit.wikimedia.org/r/gitweb?p=mediawiki/extensions/DataValues.git;a=blob;f=ValueParsers/includes/parsers/StringValueParser.php;h=f1bb40891235400e4d5c96f8c8ab2fe9236eab1c;hb=5a9f4e26ca8cecbff138831c7fe2dde98d764abb
https://gerrit.wikimedia.org/r/gitweb?p=mediawiki/extensions/DataValues.git;a=blob;f=DataValues/includes/DataValueObject.php;h=58cd4ed70fa606f6a0539083c83ed4fa6f7722bd;hb=5a9f4e26ca8cecbff138831c7fe2dde98d764abb

Qafoo GmbH - Code Review

each of the selected metrics was softened to only analyze a smaller number.

The executable lines of code statistics did not reveal any outliers or
extraordinary high numbers.

Diff\MapDiffer::doDiff()

Diff/includes/differ/MapDiffer.php

This is the class with the highest complexity in the Diff component. The degree
of complexity is acceptable. However, extensive unit testing is recommended
to ensure proper functionality of the diff algorithm.

Diff\ListDiffer

Diff/includes/differ/ListDiffer.php

The two different modes this class can work in could better be realized by
delegating the diffArrays() method to an aggregated strategy object to
enhance extensibility.

6.1.4 Ask
As for the DataValues and Diff extensions, the Ask extension was not in the
focus of the review and was therefore only analyzed roughly. Due to the
extension size, the normal approach of investigating the extension by metrics
was skipped. No conspicuous metric values were detected.

Ask\Language\Description\DescriptionCollection

Ask/includes/Ask/Language/Description/DescriptionCollection.php

This class makes use of the assert() function in order to assert value
plausibility. While this is not a general issue, incautious usage of assert() might
lead to unexpected issues, if assertions are not properly configured in
production systems. It is therefore questionable, if assert() should be used at
all. However, there is no call for action.

Ask\Language\Description\ValueDescription

Ask/includes/Ask/Language/Description/ValueDescription.php

This class represents a node in the abstract syntax tree of descriptions.
However, instead of using one node class per operation type, constants are
used to express the operation represented by the node. This might lead to
extra complexity when processing the abstract syntax tree of expressions in
other components, which use the Ask component to represent expressions.
Further investigation turned out, that there is no issue with representing
extended expressions through a custom node type.

http://qafoo.com, contact@qafoo.com 33

https://gerrit.wikimedia.org/r/gitweb?p=mediawiki/extensions/Ask.git;a=blob;f=includes/Ask/Language/Description/ValueDescription.php;h=58e0e0c6e7adcb5aa15b489736b04fa8c9af4e97;hb=fcac41b029f2716b41340ebf123ee38ac102ca3c
https://gerrit.wikimedia.org/r/gitweb?p=mediawiki/extensions/Ask.git;a=blob;f=includes/Ask/Language/Description/DescriptionCollection.php;h=05473021a9697686e80cd6746b864feef8fd008a;hb=fcac41b029f2716b41340ebf123ee38ac102ca3c
https://gerrit.wikimedia.org/r/gitweb?p=mediawiki/extensions/Diff.git;a=blob;f=includes/differ/ListDiffer.php;h=e1d98081f651627236d46a7491506a98bcee8d9c;hb=fe3441d7481f47981d2ed8c4bc28af3bbdfccec6
https://gerrit.wikimedia.org/r/gitweb?p=mediawiki/extensions/Diff.git;a=blob;f=includes/differ/MapDiffer.php;h=ee0b4638789086ee0bb10a8f0969b98ce79a86b8;hb=fe3441d7481f47981d2ed8c4bc28af3bbdfccec6

Qafoo GmbH - Code Review

6.1.5 Tests
The test base of the Wikibase project consists of a mixture of integration and
unit tests on basis of PHPUnit. As part of the code review, the two test cases
with the highest ELOC metric were analyzed. The quality of the test cases
appears to be satisfying. None of the critics collected in this section therefore
requires urgent action. It is not recommended to change existing test cases at
all, but to only apply the recommendations to newly created tests.

Wikibase\Test\ChangeHandlerTest

Wikibase/client/tests/phpunit/includes/ChangeHandlerTest.php

It appears that the test uses hand crafted “mock” objects in the form of
in-memory emulation of the original applications. While this is a valid approach,
such generic mock objects can become quite complex. Errors might easily
result in falsified test results. It is recommended to use the PHPUnit mock API40
or another mock framework for PHPUnit (e.g. Phake41) instead, where feasibly.
This will also save time during test development and make the introduction into
tests easier for new developers.

The usage of custom assertion methods like assertChangeEquals() is a valid
approach and we recommend it in favor of multiple assertions in one test
method. The requirement for creating large fixtures as done in e.g.
makeTestChanges() should be considered an indicator for too high complexity of
the code under test. The required data structure itself appears to be too
complex.
The testMergeChanges() method tests success and failure cases in one go. It is
recommended to split these cases into several test cases to make the tests
more explicit and therefore easier to read and to maintain. For the error test
case, the PHPUnit construct setExpectedException() could be considered.

The testSingleton() method actually tests two behavioral aspects at once and
should therefore be split up.

Non-speaking names like testHandleChanges() should be avoided. The name of a
test case should include the tested method and the tested aspect. Since the
test asserts that MediaWiki hooks are actually called, a name like
testHandleChangesCallsHooks() might be better suited.

The named test is also overusing the @dataProvider feature of PHPUnit. The test
needs to use func_get_args() in order to detect how the method under test is to
be called. For readability and maintainability it is recommended to use a
dedicated test for the possible data sets instead.
The backup and reset of global variables like $wgHooks could better be handled
in the setUp() and tearDown() methods to avoid cluttering of the tests
themselves.

40 http://www.phpunit.de/manual/3.8/en/test-doubles.html
41 https://github.com/mlively/Phake

http://qafoo.com, contact@qafoo.com 34

https://github.com/mlively/Phake
http://www.phpunit.de/manual/3.8/en/test-doubles.html
https://gerrit.wikimedia.org/r/gitweb?p=mediawiki/extensions/Wikibase.git;a=blob;f=client/tests/phpunit/includes/ChangeHandlerTest.php;h=2038e2ae706fd4893d0af03ba1791d10322f26d8;hb=86556a7eedd115c3781e05c3ce013b6ea14d2b6c

Qafoo GmbH - Code Review

Wikibase\Test\EditEntityActionTest

Wikibase/repo/tests/phpunit/includes/actions/EditEntityActionTest.php

The testActionForPage() method appears to test test code.

The methods adjustRevisionParam() and tryUndoAction() are both too complex. It
is important to avoid complex code in tests even more than it is in production
code, in order to keep tests reliable and maintainable. The complexity of these
methods is an indicator for too high complexity in the corresponding production
code, too, and might be a hint for a missing abstraction.

6.2 JavaScript
The following notes relate to the JavaScript code of the Wikibase extension.
They are structured by issue type.

6.2.1 Syntax and Coding Style Considerations
The code is mostly free of linting errors regarding Jslint42/JSHint43. The team
confirmed that individual members perform occasional lint checks. However,
there is no central JSLint/JSHint configuration available for the project to give all
team members and the community a guideline and allow integration into the CI
environment. It is therefore recommended to create such a configuration and
commit it into the project source code. Furthermore, only linted code should be
committed. There should be no exceptions from this rule for specific files. Most
JSLint/JSHint checks are very sane and provide protection against a lot of
JavaScript quirks. As the usage of a linting tool is to be introduced, JSHint is
favored over JSLint as it has a more active community, better configurability
and a more robust integration into CI systems.

There is good usage of use strict (strict mode) throughout the project.
However, the file client/resources/wbclient.linkItem.js is currently the only one
that does not use strict mode. A short investigation did not reveal a reason, for
not having strict mode for this file. If there is a particular reason, the
corresponding code should be refactored into a much smaller code file.

Each implemented jQuery functionality should reside in its own source file or
plugin. This is mostly done quite well. However, one example exists, which
should be cleaned up: removeClassByRegex() which is defined in
lib/resources/wikibase.utilities/wikibase.utilities.jQuery.js should be moved
to its own plugin.

In general, the renaming of variables passed to module pattern functions is
considered bad practice for code readability reasons. Developers always need
to scroll to the position of the invocation in order to take a look at what has
been passed. Abbreviation counteracts readability, without providing much

42 http://www.jslint.com/
43 http://www.jshint.com/

http://qafoo.com, contact@qafoo.com 35

http://www.jshint.com/
http://www.jslint.com/
https://gerrit.wikimedia.org/r/gitweb?p=mediawiki/extensions/Wikibase.git;a=blob;f=repo/tests/phpunit/includes/actions/EditEntityActionTest.php;h=5da30eed803830b37bfe9d45c9cac3ba6f0773d6;hb=86556a7eedd115c3781e05c3ce013b6ea14d2b6c

Qafoo GmbH - Code Review

benefit: IDEs will auto-complete the full qualified name to ease programming. A
proper minification process will eliminate long names inside of module pattern
functions. Therefore, there is no further size benefit for download by such
premature minimization.

If there is still the need to shorten a submitted variable name, this aliasing
should not occur through the function signature but rather in the first lines of
the function code. As a result, it is clear from the signature which variables are
expected and used.

6.2.2 Module Pattern Variations
Module Pattern is an encapsulation of different code entities into an anonymous
self calling function, in order to isolate the module scope from the rest of the
application. It is currently used throughout the application in the following way:

(function(gD1, aD, ...) {
 // Module code is put inside here
 window.someExportedThing = …
 // or
 globalDependency1.someExportedThing = …
})(globalDependency1, anotherDependency, ...);

This is a viable approach. However, the exported symbols are not directly
visible. Nevertheless, this approach has the benefit of being able to export
symbols to more than one namespace. In most situations this is however
discouraged, as it does counteract readability.

An alternative can be:

var exportedNamespace.exportedSymbol = (function(globalDependency){
 // module internal code here

 return whateverShouldBeExported;
})(globalDependency)

Using this technique, only one symbol/namespace segment can be exported,
which is what is desired most of the time. Furthermore, the public interface is
easily visible and discoverable.

Another alternative, which is actually used inside the project, is:

var exportedNamesapce.exportedSubNamespace = new (function(globalDependency) {
 // module internal code

 this.someExportedFunctionOrObject = …
 this.anotherExportedFunctionOrObject = …
})(globalDependency);

This variant is even better suited, as the exported sub-namespace is quite
easily visible. However, it is not directly visible which public API is exported.
The usage of new in conjunction with a function expression may lead to irritation
for inexperienced JavaScript developers.

The utilized module pattern should be unified and a solution which is most

http://qafoo.com, contact@qafoo.com 36

Qafoo GmbH - Code Review

appropriate for the team should be selected. With regards to how the
application is currently structured the usage of the second pattern described
here is recommended.

6.2.3 Event Handling
Registered events should always have an event namespace set

$element.on('click.namespace', …)

The namespaces allow to easily unregister all registered events on destruction
of a widget. jQuery-UI actually automatically performs the unregistration on a
call to _destroy(). For code inside a UI plugin, this.eventNamespace should be
prepended to any event registration name. This property is automatically
initialized during widget creation by prepending a dot to the widget name as
well as appending a GUID. The most efficient way to support this is to store the
value of the property to a variable local to the module pattern function during
the _create() or _init() phase. This processing allows a minimizer to reduce the
variable names length significantly, which is desired if many events are
registered.

Always appending this created variable takes care of the following advantages:
It ensures the usage of the correct and same namespace all the time.
Furthermore, it ensures that jQuery-UI can automatically unregister the event if
it is not needed any longer, i.e. once the widget is destroyed. Otherwise, event
handling becomes slower and slower over time, as irrelevant events are looped
over and are fired into the void.

The namespaces minimize event registration and unregistration collisions by
different widgets and plugins. There is no need care of which other widget
might have registered a certain event.

The usage of this.eventNamespace will most likely be deprecated in jQuery-UI
version 2.0. The registration and unregistration of all events from within a
widget should then be handled using this._on(...) and this._off(...) to allow
for the following benefits: Automatic unregistration of events occurs on
destruction without the need to manually provide event namespaces. this is
automatically mapped to the widgets calling context without the need to utilize
$.proxy. Events on "disabled" widgets will be suppressed (this can be disabled).

This functionality is already present in current jQuery-UI versions and should be
used if these versions are ready to be utilized by the project. Jquery-UI versions
are not directly bound to the used jQuery version. Therefore, it may be possible
to utilize a quite current jQuery-UI implementation even though the project
demands a lower jQuery library version.

6.2.4 Prototyping and Inheritance
Prototypes should not be defined as plain object literals:

http://qafoo.com, contact@qafoo.com 37

Qafoo GmbH - Code Review

var SomeClass = function() {...};
SomeClass.prototype = {
 …
}

This makes real prototypical inheritance below the first level impossible. The
coding style then needs to be changed on inheritance, as otherwise the whole
prototype would be overwritten, instead of only overwriting the inherited
methods:

// Really minimalistic and basic inherits function

function inherits(base, child) {
 // Make sure base constructor is not called upon inheritance chain creation
 var ctor = function() {
 this.constructor = child;
 };
 ctor.prototype = base.prototype;

 // Create the proper prototypical inheritance chain, while still providing in

 // individual prototype state for extension
 var child.prototype = new ctor();
};

var A = function() {};
A.prototype = {
 foo: function() {}
};

// B is supposed to inherit from A and implement a new function bar
var B = function() {};
inherits(A, B);

// Same syntax as above
B.prototype = {
 bar: function() {
 // Do something, then call foo
 this.foo();
 }
}

// ^ Does not work, as we have overwritten the whole prototype,
// including the inheritance structure

// Something like this is needed:
B.prototype.bar = function() {...};

// Inconsistent coding styles with different inheritance levels
Codingstyle should be consistent throughout inheritance chains like this:
var SomeClass = function() {...};
SomeClass.prototype.someMethod = function() {...};
SomeClass.prototype.someOtherMethod = function() {...};

This approach works with real prototypical inheritance in every inheritance
level. Currently only the DataValues extension suffers from this issue.

http://qafoo.com, contact@qafoo.com 38

Qafoo GmbH - Code Review

If literal object definition is wanted as the chosen coding style, $.extend should
always be used to ensure no already existing properties are left behind. This is
done in some parts of the DataValue extension as well.

By the time this report is written, the issue should already have been resolved.

There currently exist different forms of inheritance implementations. While the
other extensions utilize different inheritance functions, DataValues has its own
function which shows the following issues: The function can only be used for
defining inheritance but not for defining a base class. Due to this insufficient
base approach, wrappers like ValueView.expert exist, which are essentially only
a small wrapper around inheritance again. These are less maintainable and
hard to understand for non-functional developers. Therefore, a way should be
created to allow defining all "classes" consistently across the project. This
increases the readability as well as the maintainability.

From discussion with the Wikibase team it was decided to only use one
complete wrapper around inheritance consistently throughout the project since
compelling usage of a unified methodology is really important in this case.

Naming of constructor functions and corresponding static functions on a
pseudo namespace should never only be distinguishable by lower and
uppercase letters. Those kind of naming easily leads to confusion. Therefore
jQuery-UI's own way, like Widget and widget is discouraged due to readability
concerns.

6.2.5 Separation of concerns
While the code structure of Wikibase JavaScript code is generally quite good,
there are some more complex widgets/plugins which could still be optimized by
refactoring:

• wbclient.linkitem.js

• jquery.ui.suggester.js

• jquery.wikibase.claimlistview.js

• jquery.wikibase.claimview.js

• jquery.wikibase.edittoolbar.js

• jquery.wikibase.entityselector.js

• jquery.wikibase.entityselector.js

• jquery.wikibase.snakview/snakview.js

• jquery.wikibase.statementview.js

• wikibase.entity.js

• wikibase.repoApi.js

http://qafoo.com, contact@qafoo.com 39

Qafoo GmbH - Code Review

• jquery.ui.tagadata.js

Those could be split up into multiple different jQuery plugins to increase code
maintainability a bit.

As an example for a plugin, wbclient.linkitem.js could be separated into several
plugins, where each performs one of the following tasks:

• Check user login state and display appropriate dialog

• Wikibase specific dialog displaying and handling

• Retrieve linkable sites, i.e. all sites beside the current one

• Display and handle the site-link form

• Creation of the site-link table

• Linking of entities

• One time tooltips

In general, all functions that currently reside within this plugin could be split
into multiple plugins for better readability, code re-use and maintainability.

As an example for a widget, jquery.ui.suggester.js could be re-factored as
follows:

• Isolate the text field selection code (including feature detection and
handling)

• Highlighting of matched characters in a list of links

• Calculation of the browser's scrollbar width

A lot of the functionality of the suggester actually belongs to the menu widget
which is modified. Those functionality should be moved to a separate extension
of the menu-widget, which is then used by the wb.suggester instead of the
default menu widget.

The SnakView is a good example for well structured code.

6.2.6 Handling of Self Reference
The usage of $.proxy and closure based var self = this is inconsistent. Both
ways of conserving the value of this for a callbacks are completely valid. It is
important to not mix up those techniques, which can easily lead to confusion
about the current state of this. As jQuery makes heavy use of this
manipulations internally (in $.each and every plugin function for example) the
usage of the var self = this method is encouraged over the use of $.proxy.

6.2.7 View and Logic Separation
Currently, a lot of inline DOM node manipulation using the jQuery-API is

http://qafoo.com, contact@qafoo.com 40

Qafoo GmbH - Code Review

performed. With this, widget logic and view logic is mixed up. To resolve this,
the view logic should be separated from the widget using a JavaScript template
language. A minimal, but very powerful template language is Handlebars44.
This one should be sufficient for the Wikibase use case.

For the realization, it is recommended that each widget receives a set of
required templates, which are used to create the corresponding DOM. The logic
needed to handle special cases, like calling other jQuery plugins from within
the newly created DOM nodes, should be implemented as template functions or
blocks.

If the introduction of a template engine causes performance problems due to
additional re-rendering cycles, a “dirty flag” might provide a solution.
Alternatively, re-rendering could be preserved using a promise or an event bus
system. The idea here is to delay rendering until an event has reached the top
level of the DOM tree and to render all triggered changes at once.

If a migration to AngularJS45 is performed, the toolkit can also be used for the
templating task. It can easily be integrated with jQuery, while the integration
with jQuery-UI widgets would take a little amount of work. The idea should be
to create simple directives as wrappers for each jQuery-UI widget. The
Angular-UI46 thirdparty project could be used as a starting point to create such
an integration. However, due to the current inconsistency and code quality of
this project it should not be simply integrated, but only used as inspiration.

This way, AngularJS could be used as a "template" language during the first
steps of the transition phase. The dependency injection system of AngularJS
could be used to have a further decoupled application system. Later on,
AngularJS resource and http abstractions can be used as well. Migrating tests
over to AngularJS' karma-runner47 (former testacular) eases the integration of
testing with continuous integration and multiple different browser
environments.

Once jQuery-UI widgets get more and more replaced by real directives (instead
of wrappers), the advantages of AngularJS will become visible:

• No more "event-hell"

• Automatic data binding and view rendering

• Faster rendering due to the integrated rendering-queue in AngularJS

• Better separation of concerns due to ease of dependency injection

• Easier re-usability

Due to its decoupled nature and structure, AngularJS is very modular. Only the
parts required for the current refactoring stage need to be loaded. This eases

44 http://handlebarsjs.org
45 http://angularjs.org
46 http://angular-ui.github.io
47 http://karma-runner.github.io

http://qafoo.com, contact@qafoo.com 41

http://karma-runner.github.io/
http://angular-ui.github.io/
http://angularjs.org/
http://handlebarsjs.org/

Qafoo GmbH - Code Review

the introduction of another framework on top of the MediaWiki stack. Due to its
tight integration with jQuery, the possibility exists to only use AngularJS on the
repository side. The client side could still work with jQuery only, without
sacrificing a lot of functionality. This makes the integration with the currently
existing MediaWiki environment easier.

6.2.8 jQuery Philosophy
jQuery and jQuery-UI's philosophy is to use a functional approach. Functions
and events are the main tools for programming. There is no real object
orientation. While this approach changed a little with jQuery-UI, functions are
still the major implementation way. The basic idea is to create many different
small plugins and widgets, similar to the philosophy of GNU tools.

Furthermore, the toolkits always work in a DOM-centric way. Data is always
bound to DOM elements, for example widget instance data. Events are also
mostly bound to DOM elements or to widget objects directly. Widgets and
plugins are almost exclusively called on "existing" DOM nodes which have been
selected using jQuery before. Therefore, the DOM structure needs to exist in
advance most of the time in order to execute operations.

jQuerys main idea is to enhance an existing HTML/DOM structure with dynamic
operations. In this regard, Angular is quite similar. However, it uses an
approach which ensures the separation of Model/View/Controller (MVC). While
jQuery often leads to a mixture of these concerns.

There exists a possibility to split up jQuery plugins in an object oriented way:
Different concerns of a plugin can be split into different prototypes, which are
then combined inside the jQuery plugin function itself. This is mostly not
needed, as plugins should be small due to the frameworks philosophy.

It is harder to apply object oriented approaches to jQuery-UI widgets as those
are defined in a stricter structure, using the widget factory. Nevertheless, it is
possible if this is really desired, by creating separated prototypes for different
concerns. Furthermore, a generic adapter is required which is capable of
combining different prototypes into a widget-factory compatible structure
again. Different concerns could be, for example:

• Event handling

• DOM manipulation or creation

• Option handling

• Public widget interface

6.2.9 Global Dependencies and Namespaces
Instead of putting all the different modules into global variables namespaced
with extension, a central dependency injection mechanism should be

http://qafoo.com, contact@qafoo.com 42

Qafoo GmbH - Code Review

implemented to inject dependencies where they are required. If the switch to
AngularJS is realized, the dependency injector provided by this framework is
recommended to be used. Alternatively, if the switch to AngularJS is not
performed, the wire.js48 dependency injection container should be considered
or a custom solution should be implemented, which could be inspired by
AngularJS.

6.2.10 Performance Considerations
Throughout the code base, jQueries' $.each() function is used, mostly in
rendering intensive loops. for-in and for loops are generally considered faster
than a function call, especially if called many times. If profiling of the
corresponding code structures reveals performance issues, switching to the
loop variant should be considered. However, there should be no general switch
of paradigms here because the $.each() variant is considered more readable in
jQuery projects.

In general, rendering updates in loops should not work on the actual DOM tree
directly, but should rather work on document fragments. Newly created
elements are generally kept as a DOM fragment in jQuery, as long as they are
not attached to the DOM, yet. If multiple operations are to be performed on
already attached DOM nodes, they should first be detached using the .detach()
function to avoid unnecessary re-flows.

Re-flows, i.e. re-layouting of the browser engine, are an expensive
operation. Browsers try to group rendering of operations that
manipulate the DOM by queuing them until either the next frame
needs to be rendered or until some kind of geometry/layout
information (e.g. dimensions, CSS properties, attributes, …) is
requested. For this reason, it is highly recommended to strictly
separate read and write operations on the DOM.

The following example shows a violation of this principle:

var element = $("#someElement");
element.css("color", "red");
var background = element.css("background-color");
// parse background-color and for example add some color to it
var newBackground = parseAndAlterColorValue(background);
element.css("background-color", newBackground);

In contrast, the following snippet fixes the issue

var element = $("#someElement");
var background = element.css("background-color");
// parse background-color and for example add some color to it
var newBackground = parseAndAlterColorValue(background);
element.css("color", "red");
element.css("background-color", newBackground);

The second solution does not cause an unnecessary re-flow. Such operations

48 https://github.com/cujojs/wire

http://qafoo.com, contact@qafoo.com 43

https://github.com/cujojs/wire

Qafoo GmbH - Code Review

should of course generally be avoided in loops, as for each loop a re-flow would
be triggered. Therefore, different loops should be created, one that does all the
DOM read operations, before another one, which executes all the writing.

Transparency in combination with text is especially expensive to be rendered in
terms of rendering time and number of re-flows. The same applies to fade-in
and -out operations. If such animations are combined with DOM manipulations,
extra re-flows might be the result. Using CSS animations for such purposes
might be a better option, since modern browsers provide better hardware
acceleration for those.

The Chrome Developer Toolbar49 can help to detect unnecessary re-flows with
profiling. Another view especially on this problem can be gained through
Googles SpeedTracer50.

6.2.11 More Consistent Usage of Promises
Usage of promises is a good way of handling asynchronous operations
in JavaScript, which is already utilized most of the time throughout the
Wikibase code. However, there is potential for improvement:

$.when may be used to create a logical “and” conjunction between
multiple promises. For example like this:

var promiseA = someAsyncOperation();
var promiseB = someOtherAsyncOperation();

// New promise is resolved once A and B are resolved
var promiseC = $.when(promiseA, promiseB);

In addition, callbacks may return new promises to keep the callback
nesting level low:

someAsyncOperation.then(function(resultA) {
 return doSomethingAsyncWith(resultA);
}).then(function(resultB) {
 return doSomethingElseAsyncWith(resultB);
}).then(function(resultC) {
 //...
});

Animation functions return promises as well. Actually, a promise can be
registered on any jQuery-set. The promise will be resolved once the animation
is complete or, if there is no animation, it will be resolved directly:

$("#someId").fadeOut(500).then(function() {
 // Do something
});

// No knowledge about running animations is required
// (promises can always be used)

49 https://developers.google.com/chrome-developer-tools/
50 https://developers.google.com/web-toolkit/speedtracer/

http://qafoo.com, contact@qafoo.com 44

https://developers.google.com/web-toolkit/speedtracer/
https://developers.google.com/chrome-developer-tools/

Qafoo GmbH - Code Review

$("#someId").then(function() {
 // …
});

This can help to make the Wikibase JavaScript more readable and therefore
better maintainable. For example in
wikibase.ui.PropertyEditTool.EditableValue.js, the method performApiAction()
could be cleaned up like this: First of all, the registering of further actions to the
created promises should be moved to another function to create a structural
separation between the code creating the promise and the one using it.
Furthermore, according to the examples above the creation of a new Deferred
object is not needed here. A simple return from inside the called fadeout
functions callback in combination with returning its own return value as well
would be fully sufficient. This works, as fadeout is an asynchronous operation
itself and therefore already returns a promise, which can easily be reused in
this situation.

Furthermore, some general best practices about promises should be applied
here: A Deferred should never be passed around as an argument (like in
triggerApi()). A Deferred should never leave its creation scope. Only the promise
it provides should be returned. Otherwise the whole idea of Deferreds isolating
the resolution scope of promises is undermined.

In this special situation the triggerApi() should create a Deferred, handle its
resolvement/failure and return the associated promise. The _performApiAction()
should take this promise and register callbacks to it. As promises take away all
problems with async race conditions, it is no problem to do this, even if the
action is already completed upon callback registration. Using it exactly the
opposite way, like done here, makes most of the promise features (explained
above) go away and therefore counteracts the whole idea.

6.2.12 Avoiding "global" Data Stores
Currently, the wikibase object is a global storage for all fetched and retrieved
entities. It is globally accessed by different widgets to render the corresponding
data and information. The result is a static dependency, which should be
eliminated by creating a Store interface that is capable of providing all the
necessary information for each widget.

It is even recommended to split up the interface even further, to have different
storages for different parts of the handled information. The created interface
can be implemented against possibly different back ends, e.g. one that utilizes
direct communication, on on basis of the already present repoApi and one that
uses Local Storage for caching.

All implementations should provide the requested information using promises,
since this allows for arbitrary operations to occur for fetching (synchronous as
well as asynchronous). Such an API therefore provides the greatest possible
flexibility. Wrapping literal values inside of promise can be realized using $.when.

http://qafoo.com, contact@qafoo.com 45

Qafoo GmbH - Code Review

A cache layer could, on this basis, easily be implemented using aggregation: A
storage interface conforming cache layer, which simply aggregates another
storage or maybe even multiple ones to combine data sources e.g. back end
and Local Storage.

The actually used store is then injected into each component/widget which
needs the provided information. Such injection should take place using a
dependency injection as described in chapter 6.2.9. As an intermediate,
simplified realization, a widget option could be used for injection.

The result is a much better separation of the dedicated concerns data fetching,
caching and the actual usage of the data. A widget should never have to really
request data and should not be responsible for the storage itself. Required data
should just be available to the view layer through the described interface.

6.2.13 Unit Testing
The QUnit51 framework, which is utilized by the Wikibase project, is an easy to
use, minimalistic unit testing solution. However, it has some drawbacks,
especially regarding the integration with CI systems: Currently a workaround
using Selenium and parsing the created HTML/DOM is implemented.

Additionally, QUnit does not provide many different assertions, which could
help during error isolation. Mostly, QUnit uses true, false or equals assertions.
As a result, the developer needs to provide additional descriptive information
for almost every assertion.

Furthermore, QUnit does not adhere to the idea of one assertion per test. As a
result, many of the currently implemented tests are too broad and should be
divided into different separated test cases. Even though this clutters the output
generated by QUnit, it helps the readability of the tests. Separate test cases
can provide a good introduction for new developers and the community.

Calling internal functions of the units under test to provide test data, which
would otherwise be injected asynchronously, is discouraged. A better solution
would be to mock the data provider itself (or the promise) using e.g. Sinon.js52.
This allows to only test the public API while leaving the asynchronous
operations out of scope. Sinon.js does help with the testing of XMLHttpRequests
as well. Furthermore, it provides sophisticated tools to monitor, mock and test
function calls themselves. Timed events like animations and setTimeout()
callbacks can be tested synchronously as well.

It is recommended to switch to a more advanced test runner for the purpose of
having a smoother CI integration. Js-test-driver53 or karma-runner54 (former
testacular) could be good alternatives to the current QUnit/Selenium approach.
These also allow you to run tests on multiple browsers in parallel, while

51 http://qunitjs.com/
52 http://sinonjs.org/
53 https://code.google.com/p/js-test-driver/
54 https://code.google.com/p/js-test-driver/

http://qafoo.com, contact@qafoo.com 46

https://code.google.com/p/js-test-driver/
https://code.google.com/p/js-test-driver/
http://sinonjs.org/
http://qunitjs.com/

Qafoo GmbH - Code Review

aggregating results in a junit.xml compatible log. Furthermore, code coverage
analysis is possible with both systems. Both runners can use QUnit test cases
mostly out of the box.

For the time being, while this switch is not executed, the usage of the chai.js55
assertion framework in conjunction with the chai-jquery56 plugin can help to
write cleaner tests, due to more precise and powerful assertion capabilities.
The chai.js framework is completely test-runner agnostic and can therefore be
easily integrated into the current QUnit tests while still being used, once the
migration to another framework is finished.

55 http://chaijs.com/
56 http://chaijs.com/plugins/chai-jquery

http://qafoo.com, contact@qafoo.com 47

http://chaijs.com/plugins/chai-jquery
http://chaijs.com/

Qafoo GmbH
Bochumer Strasse 226
45886 Gelsenkirchen
http://qafoo.com
contact@qafoo.com

Geschäftsführer:

• Kore D. Nordmann

• Manuel Pichler

• Tobias Schlitt

• Jakob Westhoff

AG Gelsenkirchen HRB 10560
Steuernummer 319 / 5764 / 0827

mailto:contact@qafoo.com
http://qafoo.com/

	1 Executive Summary
	2 Introduction
	2.1 Environment
	2.2 Project Overview

	3 Analysis
	3.1 PHP
	3.1.1 Modus Procedendi
	3.1.2 Summary
	3.1.3 Static Scoping & Object Life Cycle
	3.1.4 Single Responsibility Principle Violations
	3.1.5 Usage of inheritance for code re-use
	3.1.6 Tests
	3.1.7 Miscellaneous

	3.2 JavaScript
	3.2.1 Modus Procedendi
	3.2.2 Results

	4 Solution Approaches
	4.1 Dependency Injection
	4.1.1 Background
	4.1.2 Requirements
	4.1.3 Dependency Management
	4.1.4 Extension Encapsulation
	4.1.5 Usage
	4.1.6 Conclusion
	4.1.7 Remarks

	4.2 Controllers
	4.3 Parsers & Serializers
	4.3.1 Analysis
	4.3.2 Parser
	4.3.3 Serializer

	5 Action Items
	6 Appendix
	6.1 PHP
	6.1.1 Wikibase
	WikibaseRepoHooks
	WikibaseDispatchChanges
	WikibaseChangeHandler
	WikibaseApiEditEntity::modifyEntity()
	WikibaseEntityView::getHtmlForLanguageTerms()
	WikibaseMultiLangConstraintDetector::addConstraintChecks
	WikibaseApiApiWikibase
	WikibaseSpecialWikibasePage
	ViewEntityAction

	6.1.2 DataValues
	ValueParsersGeoCoordinateParser
	ValueParsersApiParseValue
	ValueValidatorsDimensionValidator
	DataTypesDataTypeFactory::newType()
	DataValuesTimeValue::__construct()
	DataValuesGeoCoordinateValue::__construct()
	DataValuesDataValueObject
	ValueParsersStringValueParser
	ValueValidatorsValueValidatorObject
	General

	6.1.3 Diff
	DiffMapDiffer::doDiff()
	DiffListDiffer

	6.1.4 Ask
	AskLanguageDescriptionDescriptionCollection
	AskLanguageDescriptionValueDescription

	6.1.5 Tests
	WikibaseTestChangeHandlerTest
	WikibaseTestEditEntityActionTest

	6.2 JavaScript
	6.2.1 Syntax and Coding Style Considerations
	6.2.2 Module Pattern Variations
	6.2.3 Event Handling
	6.2.4 Prototyping and Inheritance
	6.2.5 Separation of concerns
	6.2.6 Handling of Self Reference
	6.2.7 View and Logic Separation
	6.2.8 jQuery Philosophy
	6.2.9 Global Dependencies and Namespaces
	6.2.10 Performance Considerations
	6.2.11 More Consistent Usage of Promises
	6.2.12 Avoiding "global" Data Stores
	6.2.13 Unit Testing

